Crystal size distribution and residence time in mafic rocks of the La Repartición Complex, San Luis Potosí, Mexico

Authors

DOI:

https://doi.org/10.19136/jobs.a11n32.6655

Keywords:

Crystal size distribution, residence time, petrography, La Repartición, San Luis Potosí, México

Abstract

La Repartición Volcanic Field (LRVF), located in the northeastern portion of the San Luis Potosí Volcanic Field, presents a variety of volcanic rock types, highlighting it as an exemplary natural laboratory for petrological analysis. Therefore, the present work aims to perform crystal size distribution (CSD) analyses and residence time calculations on plagioclase microcrystals from mafic rocks to understand the formation time and textural variation of these minerals in magmatic reservoirs. Petrographic analyses revealed that the analyzed samples present a mineralogical assemblage of olivine, pyroxene, and plagioclase embedded in a glassy matrix. CSD analyses exhibit steep slopes for all analyzed samples, and residence times indicate an approximate of 3 years, which suggests a rapid ascent of magmas to the surface at upper levels of the continental crust.

References

[1] Higgins, M.D., “Quantitative Textural Measurements In Igneous and Metamorphic Petrology”. Cambridge University Press, 2006.

[2] Cashman K.V. “Crystal Size Distribution (CSD) Analysis of Volcanic Samples: Advances and Challenges”, Frontiers in Earth Science vol. 8, pp. 1-17, 2020.

[3] Mangler et al., “Variation of plagioclase shape with size in intermediate magmas: a window into incipient plagioclase crystallization”, Contributions to Mineralogy and Petrology, vol. pp. 177:64, 2022

[4] Labarthe-Hernández G., Tristán-González. “Cartografía Geológica Ahualulco: Universidad Autónoma de San Luis Potosí, Instituto de Geología y Metalurgia”. Folleto Técnico 70, 34, 1981

[5] Tristán-González et al., Geocronología y distribución especial del vulcanismo del Campo Volcánico de San Luis Potosí. Boletín de la Sociedad Geológica Mexicana vol. 61, pp. 287-303, 2009.

[6] Aguillón-Robles et al., “Eocene to quaternary mafic-intermediate volcanism in San Luis Potosí, central Mexico: the transition from Farallon plate subduction to intra-plate continental magmatism”, Journal of Volcanology and Geothermal Research, vol. 276, pp. 152-172, 2014.

[7] Verma et al., “Geochemistry and petrogenesis of oligocene felsic volcanic rocks from the Pinos Volcanic Complex, Mesa Central, Mexico”, Journal South American Earth Sciences vol.102:102704, 2020;

[8] Torres-Sánchez et al., “40Ar/39Ar geochronology and petrogenesis of the sierra de San Miguelito volcanic complex, Mesa Central, Mexico”, Lithos vol. 370-371: 105613, 2020.

[9] Eguiluz de Antuñano et al., “Tectónica de la Sierra Madre Oriental”, Boletín de la Sociedad Geológica Mexicana vol. 53, pp. 1-26, 2000.

[10] Xu et al., “Inherited structures controlling the development of the Arista-Ahualulco graben in the Mesa Central Mexico”, Journal of South American Earth Sciences vol. 112: 103586, 2021

[11] Barboza et al., “Carta geológica-minera Llanos del Carmen F14-A54 San Luis Potosí, escala 1: 50,000: Pachuca, Hidalgo México”, Consejo de Recursos Minerales 1 mapa, 2001.

[12] Cashman K.V., Marsh B.D., “Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II. Makoapuhi lava lake”. Contribution to Mineralogy and Petrology vol 99, pp. 292-305, 1988.

[13] Marsh B.D., “On the interpretation of crystal size distributions in magmatic systems”. Journal of Petrology vol. 39., pp. 553-600, 1998.

[14] Higgins M.D. “Measurement of crystal size distributions”, American Mineralogy vol. 85, pp. 1105-1116, 2000.

[15] Armienti et al., “Effects of magma storage and ascent on the kinectics of crystal growth: the case of the 1991-1993 Mt. Etna eruption”, Contributions to Mineralogy and Petrology vol. 155, pp. 402-414, 1994.

[16] Torres-Sánchez et al., “Extensional Cenozoic Magmatism in the Mesa Central, Mexico: Petrological and Geochemical Evidence from La Repartición, San Luis Potosí”, Submitted to Journal of South American Earth Sciences. Submitted.

[17] Jovian et al., “Textural analysis and crystal size distribution of volcanic episodes at Dieng Volcanic Complex: Interpretation of Crystallization and Magmatic Process”, IOP Conf. Series: Earth and Environmental Science vol. 1517: 012001, 2025.

[18] Cashman K.V. “Relationship between plagioclase crystallization and cooling rate in basaltic melts”, Contributions to Mineralogy and Petrology vol 133, pp. 126-142, 1993.

[19] Nugroho et al. “Crystal size distribution (CSD) of plagioclase phenocryst-micrphenocryst and the calculation of crystal resident times in the continuos central eruption sequences of Mount Lasem, Central Java, Indonesia”, Journal of Physics: Conference Series vol 1363: 01204, 2019.

[20] Hort M. “Abrupt Change in Magma Liquids Temperature because of Volatile Loss or Magma Mixing: Effects on Nucleation, Crystal Growth and Thermal History of the Magma”. Journal of Petrology vol 39, pp. 1063-1076, 1998.

[21] D´Oriano et al. “Dynamics of ash-dominated eruptions at Vesuvius: the post-512 AD AS1a event”, Bulletin of Volcanology vol. 73, pp. 699-715, 2011.

Downloads

Published

2025-12-12

Issue

Section

Artículo científico

How to Cite

Torres Sanchez, D., & Soto Ramírez, D. (2025). Crystal size distribution and residence time in mafic rocks of the La Repartición Complex, San Luis Potosí, Mexico. JOURNAL OF BASIC SCIENCES, 11(32), 1-9. https://doi.org/10.19136/jobs.a11n32.6655