Elementary properties of the Dirichlet heat kernel for symmetric Markov processes and their applications
DOI:
https://doi.org/10.19136/jobs.a11n32.6567Keywords:
Dirichlet heat kernel, symmetric strong Markov process, Dirichlet transition density, exit time, killed process, mild solution, blow upAbstract
In this diffusion article some basic properties of the Dirichlet heat kernel are demonstrated. In probability theory this mathematical object is the transition density of a killed Markov process. In this work, symmetric strong Markov processes that could be discontinuous are considered. Among the basic properties demonstrated are: continuity, symmetry, and the Chapman-Kolmogorov equation. An important application to the theory of non-autonomous semilinear reaction-diffusion equations with Dirichlet boundary conditions is also presented. Diffusion in this case is the generator of the associated Markov process, which is known to be a non-local integro-differential operator.
References
[1] S. Abe and S. Thurner, “Anomalous diffusion in view of Einstein’s 1905 theory of Brownian motion”, Phys. A., vol. 356, pp. 403–407, 2005, doi: 10.1016/j.physa.2005.03.035.
[2] D. Applebaum, L´evy processes and stochastic calculus. Cambridge University Press, 2004.
[3] J. Bae, J. Kang, P. Kim P and J. Lee, “Heat kernel estimates for symmetric jump processes with mixed polynomial growths”, Ann. Probab., vol. 5, no. 49, pp. 2830–2868, 2019, doi: 10.1214/18-AOP1323.
[4] R. Bass, Probabilistic techniques in analysis. Springer New York, NY, 1995.
[5] D. Bebernes and D. Eberly, Mathematical problems from combustion theory. Springer New York, 1989.
[6] R. Blumenthal and R. Getoor, Markov processes and potential theory. Academic Press, 1968.
[7] J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications”, Phys. Rep., vol. 195, pp. 127–293, 1990, doi: 10.1016/0370-1573(90)90099-N.
[8] M.J. Ceballos-Lira and A. P´erez, “Blow up and globality of solutions for a nonautonomous semilinear heat equation with Dirichlet condition”, Rev. Colomb. Mat., vol. 53, no. 1, pp. 57–72, 2019, doi: 10.15446/recolma.v53n1.81042.
[9] M.J. Ceballos-Lira and A. P´erez, “Global solutions and blowing-up solutions for a nonautonomous and non local in space reaction-diffusion system with Dirichlet boundary conditions”, Frac. Calc. Appl. Anal., vol. 23, no. 4, pp. 1025–1053, 2020, doi: 10.1515/fca-2020-0054.
[10] M.J. Ceballos-Lira and A. P´erez, “Blow up and non-blow up of a reaction-diffusion system with time-dependent L´evy generators and reactions of class H”, Lat. Am. J. Probab. Math. Stat., vol. 22, pp. 451–472, 2025, doi: 10.30757/ALEA.v22-16.
[11] Z.-Q. Chen, P. Kim and R. Song, “Dirichlet heat kernel estimates for Δ+Δα/2 in C1,1 open sets”, J. Lond. Math. Soc. vol. 54, no. 4, pp. 1357–1392, 2010, doi: 10.1112/jlms/jdq102.
[12] Z.-Q. Chen, P. Kim and R. Song, “Dirichlet heat kernel estimates for Δα/2 + Δβ/2”, Illinois J. Math., vol. 84, no. 2, pp. 1357–1392, 2011, doi: 10.1215/ijm/1348505533.
[13] Z.-Q. Chen and T. Kumagai, “A priori H¨older estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps”, Rev. Mat. Iberoamericana, vol. 26, no. 2, pp. 551–589, 2010, doi: 10.4171/RMI/609.
[14] Z.-Q. Chen and R. Song, “Intrinsic Ultracontractivity and conditional gauge for symmetric stable processes”, J. Funct. Anal., vol. 150, pp. 204–239, 1997, doi: 10.1006/jfan.1997.3104.
[15] K.L. Chung and Z. Zhao, From brownian motion to Schr¨odinger’s equation. Springer Berlin, Heidelberg, 1995.
[16] K.L. Chung and J.B. Walsh, Markov processes, brownian motion, and time symmetry. Springer New York, NY, 2005.
[17] G.B. Folland, Real analysis: modern techniques and their applications, 2a ed. John Willey & Sons, 1995.
[18] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes. Berlin, New York: De Gruyter, 1994.
[19] O. Kallenberg, Foundations of modern probability, 2a ed. Springer-Verlag, 2002.
[20] P. Kim and R. Song, “Boundary behavior of harmonic functions for truncated stable processes”, J. Theor. Probab., vol. 21, pp. 287–321, 2008, doi: 10.1007/s10959-008-0145-y.
[21] P. Kim and R. Song, “Boundary Harnack principle for Brownian motions with measurevalued drifts in bounded Lipschitz domains”, Math. Ann., vol. 339, pp. 135–174, 2009, doi: 10.1007/s00208-007-0110-6.
[22] J.A. L´opez-Mimbela and A. P´erez, “Global and nonglobal solutions of a system of nonautonomous semilinear equations with ultracontractive L´evy generators”, J. Math. Anal. Appl., vol. 423, no. 1, pp. 720–733, 2015, doi: 10.1016/j.jmaa.2014.10.025
[23] A. P´erez, “Global existence and blow-up for nonautonomous systems with non-local symmetric generators and Dirichlet conditions”, Diff. Equ. Appl., vol. 7, no. 2, pp. 263–275, 2015, doi: 10.7153/dea-07-15.
[24] S.C. Port and C.J. Stone, Brownian motion and classical potential theory. Academic Press, Inc., 1978.
[25] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, Inc., 1983.
[26] R.L. Schilling and T. Uemura, “On the Feller property of Drichlet forms generated by pseudo differential operators”, Tohoku Math. J., vol. 59, pp. 401–422, 2007, doi: 10.2748/tmj/1192117985.
[27] J. V´azquez, “Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators”, Discrete contin. Dyn. Syst., vol. 7, no. 4, pp. 857–885, 2014, doi: 10.3934/dcdss.2014.7.857.
[28] J. Villa Morales, Introducci´on a la medida e integraci´on. Textos Universitarios, Ciencias B´asicas, UAA, 2005.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 JOURNAL OF BASIC SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- NoComercial — Usted no puede hacer uso del material con propósitos comerciales .
- SinDerivadas — Si remezcla, transforma o crea a partir del material, no podrá distribuir el material modificado.
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
Avisos:
No tiene que cumplir con la licencia para elementos del materiale en el dominio público o cuando su uso esté permitido por una excepción o limitación aplicable.
No se dan garantías. La licencia podría no darle todos los permisos que necesita para el uso que tenga previsto. Por ejemplo, otros derechos como publicidad, privacidad, o derechos morales pueden limitar la forma en que utilice el material.