Elementary properties of the Dirichlet heat kernel for symmetric Markov processes and their applications

Authors

  • Marcos Josias Ceballos Lira Universidad Juárez Autónoma de Tabasco image/svg+xml
  • Aroldo Pérez Pérez Universidad Juárez Autónoma de Tabasco image/svg+xml

DOI:

https://doi.org/10.19136/jobs.a11n32.6567

Keywords:

Dirichlet heat kernel, symmetric strong Markov process, Dirichlet transition density, exit time, killed process, mild solution, blow up

Abstract

In this diffusion article some basic properties of the Dirichlet heat kernel are demonstrated. In probability theory this mathematical object is the transition density of a killed Markov process. In this work, symmetric strong Markov processes that could be discontinuous are considered. Among the basic properties demonstrated are: continuity, symmetry, and the Chapman-Kolmogorov equation. An important application to the theory of non-autonomous semilinear reaction-diffusion equations with Dirichlet boundary conditions is also presented. Diffusion in this case is the generator of the associated Markov process, which is known to be a non-local integro-differential operator.

References

[1] S. Abe and S. Thurner, “Anomalous diffusion in view of Einstein’s 1905 theory of Brownian motion”, Phys. A., vol. 356, pp. 403–407, 2005, doi: 10.1016/j.physa.2005.03.035.

[2] D. Applebaum, L´evy processes and stochastic calculus. Cambridge University Press, 2004.

[3] J. Bae, J. Kang, P. Kim P and J. Lee, “Heat kernel estimates for symmetric jump processes with mixed polynomial growths”, Ann. Probab., vol. 5, no. 49, pp. 2830–2868, 2019, doi: 10.1214/18-AOP1323.

[4] R. Bass, Probabilistic techniques in analysis. Springer New York, NY, 1995.

[5] D. Bebernes and D. Eberly, Mathematical problems from combustion theory. Springer New York, 1989.

[6] R. Blumenthal and R. Getoor, Markov processes and potential theory. Academic Press, 1968.

[7] J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications”, Phys. Rep., vol. 195, pp. 127–293, 1990, doi: 10.1016/0370-1573(90)90099-N.

[8] M.J. Ceballos-Lira and A. P´erez, “Blow up and globality of solutions for a nonautonomous semilinear heat equation with Dirichlet condition”, Rev. Colomb. Mat., vol. 53, no. 1, pp. 57–72, 2019, doi: 10.15446/recolma.v53n1.81042.

[9] M.J. Ceballos-Lira and A. P´erez, “Global solutions and blowing-up solutions for a nonautonomous and non local in space reaction-diffusion system with Dirichlet boundary conditions”, Frac. Calc. Appl. Anal., vol. 23, no. 4, pp. 1025–1053, 2020, doi: 10.1515/fca-2020-0054.

[10] M.J. Ceballos-Lira and A. P´erez, “Blow up and non-blow up of a reaction-diffusion system with time-dependent L´evy generators and reactions of class H”, Lat. Am. J. Probab. Math. Stat., vol. 22, pp. 451–472, 2025, doi: 10.30757/ALEA.v22-16.

[11] Z.-Q. Chen, P. Kim and R. Song, “Dirichlet heat kernel estimates for Δ+Δα/2 in C1,1 open sets”, J. Lond. Math. Soc. vol. 54, no. 4, pp. 1357–1392, 2010, doi: 10.1112/jlms/jdq102.

[12] Z.-Q. Chen, P. Kim and R. Song, “Dirichlet heat kernel estimates for Δα/2 + Δβ/2”, Illinois J. Math., vol. 84, no. 2, pp. 1357–1392, 2011, doi: 10.1215/ijm/1348505533.

[13] Z.-Q. Chen and T. Kumagai, “A priori H¨older estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps”, Rev. Mat. Iberoamericana, vol. 26, no. 2, pp. 551–589, 2010, doi: 10.4171/RMI/609.

[14] Z.-Q. Chen and R. Song, “Intrinsic Ultracontractivity and conditional gauge for symmetric stable processes”, J. Funct. Anal., vol. 150, pp. 204–239, 1997, doi: 10.1006/jfan.1997.3104.

[15] K.L. Chung and Z. Zhao, From brownian motion to Schr¨odinger’s equation. Springer Berlin, Heidelberg, 1995.

[16] K.L. Chung and J.B. Walsh, Markov processes, brownian motion, and time symmetry. Springer New York, NY, 2005.

[17] G.B. Folland, Real analysis: modern techniques and their applications, 2a ed. John Willey & Sons, 1995.

[18] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes. Berlin, New York: De Gruyter, 1994.

[19] O. Kallenberg, Foundations of modern probability, 2a ed. Springer-Verlag, 2002.

[20] P. Kim and R. Song, “Boundary behavior of harmonic functions for truncated stable processes”, J. Theor. Probab., vol. 21, pp. 287–321, 2008, doi: 10.1007/s10959-008-0145-y.

[21] P. Kim and R. Song, “Boundary Harnack principle for Brownian motions with measurevalued drifts in bounded Lipschitz domains”, Math. Ann., vol. 339, pp. 135–174, 2009, doi: 10.1007/s00208-007-0110-6.

[22] J.A. L´opez-Mimbela and A. P´erez, “Global and nonglobal solutions of a system of nonautonomous semilinear equations with ultracontractive L´evy generators”, J. Math. Anal. Appl., vol. 423, no. 1, pp. 720–733, 2015, doi: 10.1016/j.jmaa.2014.10.025

[23] A. P´erez, “Global existence and blow-up for nonautonomous systems with non-local symmetric generators and Dirichlet conditions”, Diff. Equ. Appl., vol. 7, no. 2, pp. 263–275, 2015, doi: 10.7153/dea-07-15.

[24] S.C. Port and C.J. Stone, Brownian motion and classical potential theory. Academic Press, Inc., 1978.

[25] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, Inc., 1983.

[26] R.L. Schilling and T. Uemura, “On the Feller property of Drichlet forms generated by pseudo differential operators”, Tohoku Math. J., vol. 59, pp. 401–422, 2007, doi: 10.2748/tmj/1192117985.

[27] J. V´azquez, “Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators”, Discrete contin. Dyn. Syst., vol. 7, no. 4, pp. 857–885, 2014, doi: 10.3934/dcdss.2014.7.857.

[28] J. Villa Morales, Introducci´on a la medida e integraci´on. Textos Universitarios, Ciencias B´asicas, UAA, 2005.

Downloads

Published

2025-12-12

Issue

Section

Artículo científico

How to Cite

Ceballos Lira, M. J., & Pérez Pérez, A. (2025). Elementary properties of the Dirichlet heat kernel for symmetric Markov processes and their applications. JOURNAL OF BASIC SCIENCES, 11(32), 29-51. https://doi.org/10.19136/jobs.a11n32.6567