Impact of numerical discretization of the total variation noise removal model.

Authors

DOI:

https://doi.org/10.19136/jobs.a11n30.6447

Keywords:

Image denoising, variational method, partial differential equations, optimization, image processing

Abstract

In this manuscript, different numerical discretization techniques are compared, as well as optimization algorithms to find a solution to the total variation based model propoused for Rudin, Osher and Fatemi in 1992. In the same way, we made a qualitative and quantitative analysis of the obtained results.

References

Jin, Cong, and Luan, Ningli. “An image denoising iterative approach based on total variation and weighting function”. Multimedia Tools and Applications 79.29 (2020): 20947–20971. DOI: https://doi.org/10.1007/s11042-020-08871-0

Caselles, Vicent, Chambolle, Antonin, Novaga, Matteo, and others. “Total Variation in Imaging.”. Handbook of mathematical methods in imaging 1.2 (2015): 3 DOI: https://doi.org/10.1007/978-3-642-27795-5_23-5

Tang, Liming, and Fang, Zhuang. “Edge and contrast preserving in total variation image denoising”. EURASIP Journal on Advances in Signal Processing 2016. (2016): 1–21. DOI: https://doi.org/10.1186/s13634-016-0315-5

Strong, David, and Chan, Tony. “Edge-preserving and scale-dependent properties of total variation regularization”. Inverse problems 19.6 (2003): S165. DOI: https://doi.org/10.1088/0266-5611/19/6/059

Rudin, Leonid I, Osher, Stanley, and Fatemi, Emad. “Nonlinear total variation based noise removal algorithms”. Physica D: nonlinear phenomena 60.1-4 (1992): 259–268. DOI: https://doi.org/10.1016/0167-2789(92)90242-F

Chan, Tony F, Zhou, Hao Min, and Chan, Raymond Hon-fu. Continuation method for total variation denoising problems. Vol. 2563.

Saxena, Chandrika, and Kourav, Deepak. “Noises and image denoising techniques: A brief survey”. International journal of Emerging Technology and advanced Engineering 4.3 (2014): 878–885.

Chambolle, Antonin, and Lions, Pierre-Louis. “Image recovery via total variation minimization and related problems”. Numerische Mathematik 76. (1997): 167–188. DOI: https://doi.org/10.1007/s002110050258

Ivan May-Cen, Ricardo Legarda-Saenz, and Carlos Brito-Loeza . “A Variational Model for Wrapped Phase Denoising”. Mathematics 12. (2023). DOI: https://doi.org/10.3390/math11122618

Fan, Linwei, Zhang, Fan, Fan, Hui, and Zhang, Caiming. “Brief review of image denoising techniques”. Visual Computing for Industry, Biomedicine, and Art 2.1 (2019): 7. DOI: https://doi.org/10.1186/s42492-019-0016-7

Kim, Donghwan, and Fessler, Jeffrey A. “Optimized first-order methods for smooth convex minimization”. Mathematical programming 159. (2016): 81–107. DOI: https://doi.org/10.1007/s10107-015-0949-3

Vogel, Curtis R, and Oman, Mary E. Ïterative methods for total variation denoising”. SIAM Journal on Scientific Computing 17.1 (1996): 227–238. DOI: https://doi.org/10.1137/0917016

Bezanson, Jeff, Edelman, Alan, Karpinski, Stefan, and Shah, Viral B. “Julia: A fresh approach to numerical computing”. SIAM Review 59.1 (2017): 65–98. DOI: https://doi.org/10.1137/141000671

Wang, Z. Bovik, A.C. Sheikh, H.R. and Simoncelli, E.P. “Image Quality Assessment: From Error Visibility to Structural Similarity”. IEEE Transactions on Image Processing 13.4 (2004): 600–612. DOI: https://doi.org/10.1109/TIP.2003.819861

Setiadi, De Rosal Igantius Moses. “PSNR vs SSIM: imperceptibility quality assessment for image steganography”. Multimedia Tools and Applications 80.6 (2020): 8423–8444. DOI: https://doi.org/10.1007/s11042-020-10035-z

Vese, L.A. and Guyader, C.L. Variational Methods in Image Processing. CRC Press.

Downloads

Published

2025-04-30

Issue

Section

Artículo científico

How to Cite

Martinez Ku, N. A., Legarda Saenz, R., & Brito Loeza, C. F. (2025). Impact of numerical discretization of the total variation noise removal model. JOURNAL OF BASIC SCIENCES, 11(30), 32-44. https://doi.org/10.19136/jobs.a11n30.6447