Multi-step method for determining the energy spectrum of different quantum potential wells

Authors

  • Ramon Eduardo Lopez Villamil Universidad Juárez Autónoma de Tabasco image/svg+xml
  • I. Pérez Castro Cinvestav-Zacatenco, Departamento de Física
  • M. A. Zapata de la Cruz Universidad Nacional Autónoma de México, IF
  • J. Tiscareño Ramirez Cinvestav-Zacatenco, Departamento de Física

DOI:

https://doi.org/10.19136/jobs.a10n29.5033

Keywords:

Multi-step, Potential well, Schrödinger equation, Bound states, MOSFET

Abstract

In this work, the bound states of a quantum system with a triangular potential well are numerically determined. Additionally, a practical case is studied in which a potential found in MOSFET devices is analyzed. In both cases, the multi-step approximation method is used, which involves approximating the potential by a chain of n-step potentials. From this new potential, the expressions for the reflection and transmission coefficients are determined through a recursive formula, which is a generalization of the coefficients for the simple step potential case. For the system with a triangular well, two bound energies are found with relative errors of less than 1%, while for the potential associated with MOSFET devices, only one bound energy is obtained

 

References

Jirauschek, C. (2009). Accuracy of transfer matrix approaches for solving the effective mass Schrödinger equation. IEEE Journal of Quantum Electronics, 45(9), 1059-1067. DOI: https://doi.org/10.1109/JQE.2009.2020998

Jonsson, B., Eng, S. T. (1990). Solving the Schrödinger equation in arbitrary quantum- well potential profiles using the transfer matrix method. IEEE journal of quantum electronics, 26(11), 2025-2035. DOI: https://doi.org/10.1109/3.62122

Li, W. (2010). Generalized free wave transfer matrix method for solving the Schrödinger equation with an arbitrary potential profile. IEEE journal of quantum electronics, 46(6), 970-975. DOI: https://doi.org/10.1109/JQE.2010.2043060

Ghatak, A. K., Thyagarajan, K., Shenoy, M. R. (1988). A novel numerical technique for solving the one-dimensional Schrödinger equation using matrix approach-application to quantum well structures. IEEE Journal of Quantum electronics, 24(8), 1524-1531. DOI: https://doi.org/10.1109/3.7079

J. M. Acosta, Método de solución multi-step y su aplicación en mecánica cuántica, Tesis para obtener el grado de licenciatura, 2019

De La Peña, L. (2014). Introducción a la mecánica cuántica. Fondo de Cultura económica, 1era edición (digital), 2014, 123-124.

Zettili, N. (2003). Quantum mechanics: concepts and applications, 220-224.

Zhao, Q., Aqiqi, S., You, J. F., Kria, M., Guo, K. X., Feddi, E., ... Yuan, J. H. (2020). Influence of position-dependent effective mass on the nonlinear optical properties in AlxGa1 xAs/GaAs single and double triangular quantum wells. Physica E: Low-dimensional Systems and Nanostructures, 115, 113707. DOI: https://doi.org/10.1016/j.physe.2019.113707

Lui, W. W., Fukuma, M. (1986). Exact solution of the Schrödinger equation across an arbitrary one-dimensional piecewise-linear potential barrier. Journal of Applied Physics, 60(5), 1555-1559. DOI: https://doi.org/10.1063/1.337788

Al, E. B., Ungan, F. A. T. I˙. H., Yesilgul, U., Kasapoglu, E. S. I˙. N., Sari, H. U¨. S. E. Y. I˙. N., S¨okmen, I. (2015). Effects of applied electric and magnetic fields on the nonlinear optical properties of asymmetric GaAs/Ga1-xAlxAs double inverse parabolic quantum well. Optical Materials, 47, 1-6. DOI: https://doi.org/10.1016/j.optmat.2015.06.048

Peyre, H., Camassel, J., Gillin, W. P., Homewood, K. P., Grey, R. (1994). Thermally induced change in the profile of GaAs/AlGaAs quantum wells. Materials Science and Engineering: B, 28(1-3), 332-336. DOI: https://doi.org/10.1016/0921-5107(94)90077-9

Cassan, E. (2000). On the reduction of direct tunneling leakage through ultrathin gate oxides by a one-dimensional Schrödinger–Poisson solver. Journal of applied physics, 87(11), 7931-7939. DOI: https://doi.org/10.1063/1.373477

Deck, R. T., Li, X. (1995). Evaluation of the eigenvalues of multiple quantum-well potentials. American Journal of Physics, 63(10), 920-928. DOI: https://doi.org/10.1119/1.18034

Cohen-Tannoudji, C., Diu, B., Lalo¨e, F. (2019). Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications. John Wiley Sons, 280-282. DOI: https://doi.org/10.1515/9783110638738

Griffiths, D. J. (1960). Introduction to quantum mechanics. Pearson International Edition (Pearson Prentice Hall, Upper Saddle River, 2005).

Downloads

Published

2024-12-16

Issue

Section

Artículo científico

How to Cite

Lopez Villamil, R. E., Pérez Castro, I., Zapata de la Cruz, M. A., & Tiscareño Ramirez, . J. (2024). Multi-step method for determining the energy spectrum of different quantum potential wells. JOURNAL OF BASIC SCIENCES, 10(29), 64-72. https://doi.org/10.19136/jobs.a10n29.5033