Multi-step method for determining the energy spectrum of different quantum potential wells
DOI:
https://doi.org/10.19136/jobs.a10n29.5033Keywords:
Multi-step, Potential well, Schrödinger equation, Bound states, MOSFETAbstract
In this work, the bound states of a quantum system with a triangular potential well are numerically determined. Additionally, a practical case is studied in which a potential found in MOSFET devices is analyzed. In both cases, the multi-step approximation method is used, which involves approximating the potential by a chain of n-step potentials. From this new potential, the expressions for the reflection and transmission coefficients are determined through a recursive formula, which is a generalization of the coefficients for the simple step potential case. For the system with a triangular well, two bound energies are found with relative errors of less than 1%, while for the potential associated with MOSFET devices, only one bound energy is obtained
References
Jirauschek, C. (2009). Accuracy of transfer matrix approaches for solving the effective mass Schrödinger equation. IEEE Journal of Quantum Electronics, 45(9), 1059-1067. DOI: https://doi.org/10.1109/JQE.2009.2020998
Jonsson, B., Eng, S. T. (1990). Solving the Schrödinger equation in arbitrary quantum- well potential profiles using the transfer matrix method. IEEE journal of quantum electronics, 26(11), 2025-2035. DOI: https://doi.org/10.1109/3.62122
Li, W. (2010). Generalized free wave transfer matrix method for solving the Schrödinger equation with an arbitrary potential profile. IEEE journal of quantum electronics, 46(6), 970-975. DOI: https://doi.org/10.1109/JQE.2010.2043060
Ghatak, A. K., Thyagarajan, K., Shenoy, M. R. (1988). A novel numerical technique for solving the one-dimensional Schrödinger equation using matrix approach-application to quantum well structures. IEEE Journal of Quantum electronics, 24(8), 1524-1531. DOI: https://doi.org/10.1109/3.7079
J. M. Acosta, Método de solución multi-step y su aplicación en mecánica cuántica, Tesis para obtener el grado de licenciatura, 2019
De La Peña, L. (2014). Introducción a la mecánica cuántica. Fondo de Cultura económica, 1era edición (digital), 2014, 123-124.
Zettili, N. (2003). Quantum mechanics: concepts and applications, 220-224.
Zhao, Q., Aqiqi, S., You, J. F., Kria, M., Guo, K. X., Feddi, E., ... Yuan, J. H. (2020). Influence of position-dependent effective mass on the nonlinear optical properties in AlxGa1 xAs/GaAs single and double triangular quantum wells. Physica E: Low-dimensional Systems and Nanostructures, 115, 113707. DOI: https://doi.org/10.1016/j.physe.2019.113707
Lui, W. W., Fukuma, M. (1986). Exact solution of the Schrödinger equation across an arbitrary one-dimensional piecewise-linear potential barrier. Journal of Applied Physics, 60(5), 1555-1559. DOI: https://doi.org/10.1063/1.337788
Al, E. B., Ungan, F. A. T. I˙. H., Yesilgul, U., Kasapoglu, E. S. I˙. N., Sari, H. U¨. S. E. Y. I˙. N., S¨okmen, I. (2015). Effects of applied electric and magnetic fields on the nonlinear optical properties of asymmetric GaAs/Ga1-xAlxAs double inverse parabolic quantum well. Optical Materials, 47, 1-6. DOI: https://doi.org/10.1016/j.optmat.2015.06.048
Peyre, H., Camassel, J., Gillin, W. P., Homewood, K. P., Grey, R. (1994). Thermally induced change in the profile of GaAs/AlGaAs quantum wells. Materials Science and Engineering: B, 28(1-3), 332-336. DOI: https://doi.org/10.1016/0921-5107(94)90077-9
Cassan, E. (2000). On the reduction of direct tunneling leakage through ultrathin gate oxides by a one-dimensional Schrödinger–Poisson solver. Journal of applied physics, 87(11), 7931-7939. DOI: https://doi.org/10.1063/1.373477
Deck, R. T., Li, X. (1995). Evaluation of the eigenvalues of multiple quantum-well potentials. American Journal of Physics, 63(10), 920-928. DOI: https://doi.org/10.1119/1.18034
Cohen-Tannoudji, C., Diu, B., Lalo¨e, F. (2019). Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications. John Wiley Sons, 280-282. DOI: https://doi.org/10.1515/9783110638738
Griffiths, D. J. (1960). Introduction to quantum mechanics. Pearson International Edition (Pearson Prentice Hall, Upper Saddle River, 2005).
 
											Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Basic Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- NoComercial — Usted no puede hacer uso del material con propósitos comerciales .
- SinDerivadas — Si remezcla, transforma o crea a partir del material, no podrá distribuir el material modificado.
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
Avisos:
No tiene que cumplir con la licencia para elementos del materiale en el dominio público o cuando su uso esté permitido por una excepción o limitación aplicable.
No se dan garantías. La licencia podría no darle todos los permisos que necesita para el uso que tenga previsto. Por ejemplo, otros derechos como publicidad, privacidad, o derechos morales pueden limitar la forma en que utilice el material.
