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El.presente numero del Journal of Basic Sciences esta integrado por seis contribuciones
que;desde distintos campos de las ciencias naturales y matematicas, ponen de relieve una
caracteristica fundamental en la investigacion contemporanea que es la diversidad de
enfoques.y metodologias aplicadas en la blusqueda de soluciones y respuestas ante
problematicas especificas. Aun cuando el contexto y los objetos de estudios son diversos,
desde las ciencias de la tierra hasta el analisis funcional, la fisica tedrica o la teoria de
categorias, en todos ellos se comparte un interés comun: abundar en la comprensién de
los fendmenos abordados, mediante herramientas metodoldgicas rigurosas.

El primer articulo, realizado en el campo volcanico “La Reparticion”, situado al noreste de
San Luis Potosi, se enfoca en el analisis de la distribucién de tamafio de cristales y el calculo
de los tiempos de residencia de microcristales de plagioclasa en este escenario geoldgico,
muy apropiado para el estudio de procesos magmaticos. Con los resultados obtenidos, se
enriquece la compresion de la evolucion textural de las rocas maficas y se subraya la
importancia de los estudios microestructurales para reconstruir la dinamica interna de los
sistemas volcanicos.

En la segunda contribucién, se pone de manifiesto también el interés por estudiar la
interaccion entre procesos naturales y condiciones locales, ya que se examina la
composicion mineraldgica y edafolégica de suelos en Huimanguillo y Jalpa de Méndez,
Tabasco. Mediante estudios de difraccion de rayos X y trabajo en campo, se encuentran
diferencias sustanciales en la mineralogia, las propiedades fisicas y la capacidad de
intercambio idnico de los suelos, revelando asi tanto la variabilidad intrinseca de los mismos
como la influencia de actividades antropogénicas. Con este trabajo, se ofrecen insumos
valiosos destinados a un manejo sostenible de los suelos en la region.

Las sintesis y propiedades cataliticas del 6xido de zinc se estudian en el tercer articulo de
este numero, mediante técnicas analiticas apropiadas se logro la caracterizacién de este
compuesto obtenido mediante combustion en estado sélido, ademas de que se probd su
actividad para la degradacion del 4-nitrofenol en condiciones de fotocatalisis, probandose
asi que puede ser un material promisorio para aplicarse exitosamente en el area de la
quimica ambiental.

El cuarto trabajo se incluye en el ambito de la probabilidad y el analisis, al analizar las
propiedades fundamentales del kernel de calor de Dirichlet asociado a procesos de Markov
simétricos, potencialmente discontinuos. Al demostrar una serie de caracteristicas tales
como continuidad, simetria y la ecuacién de Chapman-Kolmogorov, se fortalece la
comprension tedrica del fendmeno, ademas de hacer posible su aplicacién en ecuaciones
semilineales de reaccion-difusion no auténomas. De esta forma se entrelazan procesos
estocasticos con problemas de evolucion gobernados por operadores no locales.
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~ Por otro lado, se presenta en el quinto articulo una reconstruccién precisa de la deduccién

de Feynman de las ecuaciones de Maxwell. A partir de la segunda ley de Newton y de las
relaciones de Poisson en un espacio euclideo, el analisis se extiende a un marco relativista
mediante calculos tensoriales en el espacio de Minkowski. Con ello, se abunda en la
compresion de los supuestos fundamentales de la derivacion original, fortaleciendo asi la
formulacion pedagdgica del problema e integrando el principio de acoplamiento minimo con
los'desarrollos de Montesinos y Pérez-Lorenzana.

Finalmén:ge, en la sexta contribucion de este niumero, se profundiza en conceptos centrales
de la teoria de categorias, como son la representabilidad, los objetos universales y el Lema
de Yoneda. Mediante una serie de ejemplos que abarcan areas de las matematicas como
el algebra lineal, la topologia y la teoria de anillos, se ofrece una ruta clara hacia la
comprension de estas nociones, contribuyendo asi a una difusién de ideas fundamentales
que forman parte del pensamiento matematico moderno.

En conjunto, los trabajos incluidos en este numero ilustran la riqueza interdisciplinaria de la
investigacion actual y subrayan el valor del rigor cientifico, desde sus aspectos
conceptuales hasta los metodologicos, para la generacion de conocimiento. Que estas
aportaciones sirvan de inicio para nuevas dudas e inquietudes, fomentando la interaccién
académica y estimulando el desarrollo de investigaciones futuras.
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Distribucion de tamaiio de cristales y tiempo de residencia en rocas maficas
del Complejo La Reparticion, San Luis Potosi, México

Torres-Sanchez D.""”, Soto-Ramirez D.2
!Instituto de Geociencias, Universidad Nacional Auténoma de México, Blvd. Juriguilla 3001, Campus UNAM-Juriquilla,
Querétaro, 76230, México.
2Posgrado de la Divisién de Geociencias Aplicadas, Instituto Potosino de Investigacion Cientifica y Tecnoldgica (IPICYT),
Camino a la Presa San José 2055, San Luis Potosi 78216, Méxic®
“*dtorressan(@geociencias.unam.mx, dariotorressan@hotmail.com

Resumen

El Campo Volcanico de La Reparticion (CVLR) localizado en la porcion noreste del Campo
Volcanico de San Luis Potosi, presenta una variacion en distintos tipos de rocas volcanicas,
destacandolo como un laboratorio natural ejemplar para analisis petrologicos. Por lo tanto, el presente
trabajo muestra como objetivo el realizar analisis de distribucion de tamaio de cristales (CSD) y
calculos de tiempo de residencia en microcristales de plagioclasas de rocas maficas para comprender
el tiempo de formacion y la variacion textural de estos minerales en los reservorios magmaticos. Los
analisis petrograficos revelaron que las muestras analizadas presentan un ensamblaje mineralogico
de olivino, piroxeno y plagioclasa embebidos en una matriz vitrea. Los andlisis CSD exhiben
pendientes pronunciadas para todas las muestras analizadas, como también, los tiempos de residencia
indican un aproximado de 3 afios, lo cual sugiere un rapido ascenso de los magmas a la superficie en
niveles superiores de la corteza continental.

Palabras claves: Distribucion de tamario de cristales, tiempo de residencia, petrografia, La
Reparticion, San Luis Potosi, México.

Abstract

La Reparticion Volcanic Field (LRVF), located in the northeastern portion of the San Luis Potosi
Volcanic Field, presents a variety of volcanic rock types, highlighting it as an exemplary natural
laboratory for petrological analysis. Therefore, the present work aims to perform crystal size distribution
(CSD) analyses and residence time calculations on plagioclase microcrystals from mafic rocks to
understand the formation time and textural variation of these minerals in magmatic reservoirs.
Petrographic analyses revealed that the analyzed samples present a mineralogical assemblage of olivine,
pyroxene, and plagioclase embedded in a glassy matrix. CSD analyses exhibit steep slopes for all
analyzed samples, and residence times indicate an approximate of 3 years, which suggests a rapid ascent
of magmas to the surface at upper levels of the continental crust.

Keywords: Crystal size distribution, residence time, petrography, La Reparticion, San Luis Potosi,
Meéxico.
Recibido: 25 de agosto de 2025, Aceptado: 17 de noviembre de 2025, Publicado: 12 de diciembre de 2025
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1. Introduccion

Dentro de la petrologia, es bien sabido que la forma y tamafios de los cristales de rocas volcanicas refleja
las condiciones de enfriamiento y de crecimiento en los sistemas magmaticos [1]. De igual forma, se conoce
que la mayoria de las rocas volcanicas muestran cristales que varian en tamafios desde micras (um) hasta
centimetros (cm), una caracteristica que se explota comiinmente en el analisis de distribucion del tamafio
de cristales para poder inferir las vias y formas de ascenso del magma, la cinética de cristalizacion, o bien,
los tiempos de residencia de los cristales en las camaras o reservorios magmaticos [2].

La presencia de multiples poblaciones de cristales en rocas volcénicas sugiere multiples eventos de
nucleacion y crecimiento bajo condiciones magmaticas (p.ej. subenfriamiento magmatico). Un ejemplo de
esto son las poblaciones de microlitos, los cuales pueden formarse por descompresion durante el ascenso a
la superficie o por enfriamiento durante el emplazamiento de la lava. Es por esto, que es razonable suponer
que cada poblacion de cristales de rocas volcénicas desarrollard morfologias cristalinas distintas que
reflejan condiciones magmaticas cambiantes [3].

Por lo tanto, el presente trabajo muestra como objetivo el aplicar técnicas analiticas cuantitativas para la
comprension de la formacidon y variacion textural de plagioclasas en rocas volcanicas de composicion
mafica. Para lograrlo se selecciond rocas maficas pertenecientes al derrame Romerillo del Complejo
Volcanico La Reparticion, San Luis Potosi. El Complejo Volcanico La Reparticion compone uno de los
seis complejos volcanicos del Campo Volcanico de San Luis Potosi (CVSLP; Fig. 1a) el cual se caracteriza
principalmente por un magmatismo voluminosos de rocas silicicas desarrolladas durante el periodo del
Eoceno y el Oligoceno [4-8]. Las rocas maficas que componen al Complejo Volcanico La Reparticion han
sido estudiadas de manera escasa [5], por lo que el estudio de la formacion, caracterizacion y procesos
magmaticos involucrados en la formacion de este tipo de rocas sigue siendo un tema de interés dentro de
las geociencias del area de estudio.

2. Contexto geoldgico breve

El Complejo Volcanico La Reparticion (CVLR; Fig. 1b) se localiza en la porcion noreste del CVSLP (Fig.
la) y se encuentra conformado principalmente por rocas volcanicas de composicion félsica (flujos de lava
y paquetes piroclasticos), como también por rocas volcanicas de composicion de mafica e intermedia (flujos
de lava) las cuales cubren un periodo de tiempo de formacion que oscila entre el Oligoceno al Mioceno (~
32-20 Ma; [5]).

https://revistajobs.ujat.mx
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Figura 1. a) Mapa geologico simplificado del Campo Volcéanico San Luis Potosi; b) Mapa geologico simplificado
del Complejo Volcanico La Reparticion.

Asimismo, estas estructuras volcanicas se encuentran emplazadas a través de un basamento Cretacico el
cual se encuentra conformado principalmente por rocas sedimentarias [9,5,10], como también, esta region
se encuentra afectada por estructuras geoldgicas del Cenozoico como son: (i) sistemas de fallas normales
con tendencias este-noreste (E-NE) y noroeste (NW); (ii) estructuras de pliegues con orientaciones E-NE
relacionadas a la orogenia Laramide [11].

3. Metodologia

3.1 Analisis petrografico

Se prepararon laminas delgadas de cinco muestras representativas de la zona para la elaboracion del analisis
modal y cuantitativo. Se elabord un conteo de aproximadamente 1000 puntos en cada lamina delgada para
la clasificacion modal utilizando un microscopio petrografico Leica y un contador de puntos semi-
automatico de marca PELCON en el Instituto Potosino de Investigaciones Cientifica y Tecnologicas
(IPICYT), San Luis Potosi.

3.2 Analisis de distribucion de tamaiio de cristal

El concepto de distribucion del tamafio de cristal (CSD por sus siglas en inglés cristal size distribution) se
introdujo por primera vez para comprender la dindmica del magma en términos de los procesos de
cristalizacion de plagioclasas y para conocer la tasa de crecimiento durante la evolucion de rocas
magmaticas [12-13]. La variacion del logaritmo natural de la densidad de poblacion cristalina, es decir, el
numero de cristales por unidad de volumen, en conjunto con el tamafio del cristal (L) proporcionan un

https://revistajobs.ujat.mx
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patrén lineal en un estado constante del sistema magmatico [14]. El diagrama CSD muestra lineas rectas
que sugieren las condiciones constantes del magma [14]. Se sugiere que un conjunto de lineas rectas a lo
largo de la misma pendiente, pero con una variacion en las intersecciones generadas por la reduccion de
temperatura, modifica la pendiente de la CSD, pero inhibe el mismo valor de la interseccion. Una pendiente
mas pronunciada muestra evidencia de fraccionamiento de cristales. Segin [14], la CSD curva y concava
ascendente sugiere firmemente el proceso de mezcla de magma. Ademas, la CSD curva se genera como
resultado del periodo progresivo de enfriamiento a través del ascenso y el emplazamiento del magma [15].
Por lo tanto, a partir del procesamiento propuesto por [14], se realiz6 el analisis de imagenes automatico de
las cinco muestras de roca representativas (Muestra LRO1, LR0O5, LR12,LR16,LR21; Tabla 1) de las cuales
se tomaron tres microfotografias representativas por cada muestra utilizando un microscopio de marca
LEICA con camara integrada del Instituto Potosino de Investigacion Cientifica y Tecnoldgica (IPICYT),
San Luis Potosi. La adquisicion de informacion para los analisis de CSD fue obtenida a partir del uso del
software ImageJ (https://imagej.net/ij/), como también, los datos obtenidos se corrigieron, graficaron y se
realizaron los calculos adecuados utilizando el software CSDCorrections propuesto por [1]. El
procesamiento de imagenes se centr6 en la obtencion de longitudes, anchuras y areas de los microcristales
de plagioclasa que incorporan a las muestras seleccionadas. A partir de la informacion obtenida por el
procesamiento de imdgenes y aplicando el uso del software CSDCorrections [1] se obtuvieron las
regresiones lineales correspondientes para el célculo de la pendiente (m) e interceptp para cada una de las
muestras. La obtencion de estas regresiones se asocia a la variacion del logaritmo natural de la densidad de
poblacion de cristales (p.ej. el nimero de cristales por unidad de volumen) con el tamafio de cristal
brindando asi un patrén lineal bajo un estado consisten de sistemas abiertos [1].

4. Resultados y discusion

4.1 Analisis petrografico

Las rocas volcéanicas de composicion mafica del CVLR exhiben una textura porfiritica con una presencia
esporadica de vesiculas (Fig. 2). Los microlitos observados en las muestras analizadas muestran una
orientacion sub-paralela con una matriz de estilo afanitica (Fig. 2). A su vez, se observa que el ensamblaje
mineralogico principal se conforma por fenocristales de plagioclasa, los cuales se encuentran de forma
escasa (~ 0.3 a 0.8 mm de diametro), a su vez, se observan fenocristales subhedrales a euhedrales de
clinopiroxeno (Fig. 2) con diametros aproximados de 0.3 — 0.5 mm, adicionalmente, se presentan en
microcristales subhedrales (< 0.1 mm) de olivino (Fig. 2).

La mineralogia presente en estas rocas volcanicas se alinea a los ensamblajes mineraldgicos tipicos de rocas
maficas del Campo Volcanico de San Luis Potosi, tanto del sector norte como del sector sur [8]. A partir
de los resultados geoquimicos y geofisicos presentados por [16], se considera que un sistema magmatico
segmentado es exhibido por debajo del CVLR, dando lugar a caracteristicas petrograficas (tamafios, formas
y abundancias de cristales) variadas para un mismo estilo de litologia (Fig. 2).

https://revistajobs.ujat.mx



Torres-Sanchez et al. Journal of Basic Sciences vol. 11 (32), p. 1-9, septiembre-diciembre 2025

e

Figura 2. Microfotografias de rocas maficas del CVLR. (a-e) Fenocristales de olivino (Ol), clinopiroxenos (Cpx)

y plagioclasas (P1) con microcristales de plagioclasa (P1) embebidos en un matriz vitrea con presencia de
microcristales opacos esparcidos a lo largo de la matriz.

4.2 Distribucion de tamaiio de cristales (CSD) de rocas maficas del CYLR

El resultado de los analisis de distribucion de tamafio de cristales en microcristales (< 0.1 mm) de
plagioclasa se reporta en la Figura 3. Las rocas maficas del CVLR poseen valores de pendientes que abarcan
desde -84.5 a-100 (mm™") e interceptos de 15.52 a 16.52 (mm™) con valores de R?0.95 — 0.94 lo cual sugiere
que las muestras son estadisticamente significativas (valores significativos R> => 0.95; [1]). La pendiente
pronunciada observada en los microcristales de plagioclasas de las rocas maficas del CVLR se relacionan
con un numero de gradiente mas alto al de una pendiente suave (Fig. 3). Este tipo de pendiente pronunciada
corresponde a una rapida tasa de formacion de cristales, lo que brinda lugar a microcristales, o cristales
pequetios [17]. A su vez, estos resultados sugieren que las muestras se relacionan a un estilo eruptivo
asociado a escorias de depdsitos estrombolianos [1]. Este estilo de resultados puede ser observado de igual
forma en rocas igneas analizadas por [3], [12] y [13], en donde presentan tasas de cristalizacion rapidas
para microcristales, como para fenocristales de plagioclasa, muy similares a las presentes en las muestras
del presente estudio.

Por otro lado, para calcular la tasa de residencia de los cristales en el magma correspondiente se realizo el
calculo siguiendo la ecuacion:

T —( ! /31536000
"= GxM)
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en donde Tr se refiere al tiempo de residencia calculado en afios, G es el rango de crecimiento del cristal
(mmy/s; 107'°- 10 mm/s) y m describe a la pendiente de la linea de tendencia de la poblacion de cristales,
obtenida por el analisis de CSD. Dentro de esta formula el valor de G es elegido en base al valor propuesto
por [18] para cristales de plagioclasas de rocas méficas (G = 10" mm/s) mientras que la constante de

31536000 es el coeficiente de conversion de segundos afios.
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Figura 3. Gréficas de densidad de poblacion vs tamatfio de cristal relacionado a los microcristales de plagioclasa
de las rocas volcéanicas del CVLR. En los graficos se observa una pendiente pronunciada para la mayoria de los
microcristales de las rocas, lo cual indica un crecimiento progresivo de los microcristales de plagioclasas, con
excepcion de la muestra LRO1, la cual presenta una pequefia tendencia abrupta, en microcristales de tamafio
<0.02mm lo que marca un cambio en crecimientos brusco al momento de generacion de los microcristales

presentes en la muestra.

Siguiendo las recomendaciones mencionadas por [19], se consider6 que la formacion de los microcristales
de plagioclasa presentes en las rocas maficas del CVLR tuvo lugar en la parte superior del sistema
magmatico del area de estudio. Los calculos de tiempo de residencia revelan que los microcristales de
plagioclasa presentes en las rocas maficas del CVLR varia de un tiempo de 3.75 a 3.28 afios (Tabla 1), lo

Size

Tamadio

cual sugiere que la poblacion de microcristales sufrié un subenfriamiento alto [20].
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Tabla 1. Informacion del analisis de distribucion de tamafo de cristales correspondientes a las rocas
maficas del CVLR (Inicial LR# indica las iniciales de la zona La Reparticion).

Muestra  Pendiente de la linea de Intercepto R? Tiempo de residencia
tendencia (aios)
LRO1 -84.5 15.52 0.95 3.75
LRO5 -99.5 16.56 0.94 3.19
LR12 -98.4 16.03 0.95 3.22
LR16 -100 16.4 0.94 3.17
LR21 -96.7 16.13 0.95 3.28

El sub-enfriamento alto de microcristales en rocas volcanicas, cominmente se relaciona a procesos de
cristalizacion que toman lugar en niveles someros de la corteza continental en un periodo de tiempo corto
[20], como es el caso que observamos para las rocas maficas del CVLR. Por lo tanto, se puede mencionar
que el proceso de cristalizacion de microcristales de plagioclasa en rocas maficas del CVLR tomo lugar en
niveles someros de la corteza en un periodo corto de tiempo (~3 afios) previo a su erupcion a la superficie.

El tiempo de residencia, en conjunto con los resultados de los andlisis de distribucion de cristales de las
rocas maficas del CVLR marcan una evidencia de procesos de cristalizacion fraccionada rapida en conjunto
con un estancamiento en niveles someros de la corteza continental, esto apoya a lo propuesto por [16] en
donde, a partir de informacion aeromagnética y geoquimica, se propone un sistema magmatico con
reservorios someros a niveles de la corteza continental superior, como también, la actividad de procesos
magmaticos de cristalizacion fraccionada. A su vez, este estilo de procesos magmaticos que afectan a las
rocas maficas del CVLR, se ha observado a partir de analisis geoquimicos en complejos volcanicos
aledafios de la zona de estudio, pertenecientes al Campo Volcanico de San Luis Potosi (p.ej. Complejo
Volcéanico Ventura, Ahualulco, Sierra de San Miguelito, entre otros). Asimismo, realizando una pequefa
comparacion con una zona alejada al contexto del Campo Volcanico de San Luis Potosi, [21] reportan
tiempos de residencia cercanos a los de las rocas maficas del CVLR para el volcan Vesubio, Italia. Estos
autores relacionan los tiempos de residencia (< 6 afios; [21]) ha procesos de cristalizacion fraccionada
rapida, como también, a un ascenso magmatico parcialmente lento a través de la corteza continental. Por lo
tanto, esta primera aproximacion da lugar a futuras investigaciones relacionadas a los procesos de
cristalizacion que afectan la zona, como también, la aplicacion de distintas técnicas analiticas como lo puede
ser el uso de la microsonda electrénica.

5. Conclusiones

Las rocas maficas del CVLR se caracterizan por presentar texturas porfiriticas y un ensamblaje
mineralogico principal de olivino, piroxeno y plagioclasas. A su vez, la matriz de estas rocas es vitrea con
una alta presencia de microcristales de plagioclasas. A partir de los resultados obtenidos se considera que
el tiempo estimado de residencia para los microcristales de plagioclasas presentes en la matriz de las rocas
volcanicas cubre aproximadamente tres afios. Este periodo de tiempo sugiere un proceso de sub-
enfriamiento alto y rdpido en niveles someros de la corteza continental. Asimismo, las pendientes
pronunciadas observadas en las rocas volcanicas confirman el tiempo de residencia rapido, lo cual conduce
a la generacion de microcristales.
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Resumen

Este estudio aborda la caracterizacion mineralogica y edafoldgica de suelos provenientes de los
municipios de Huimanguillo y Jalpa de Méndez, en Tabasco, México. A través del analisis de difraccion
de rayos X (DRX) y estudios edafoldgicos, se identificaron variaciones en la composicion mineral y en la
capacidad de intercambio cationico (CIC) entre ambos sitios. Los suelos de Jalpa de Méndez mostraron una
mayor diversidad mineralogica, mientras que los de Huimanguillo presentaron sefiales de alteracion por
actividad antropogénica. Las propiedades fisicas como textura, color y humedad, asi como las condiciones
bioldgicas y presencia de materia organica, también variaron entre los perfiles analizados. Los resultados
obtenidos aportan informacion relevante para comprender el potencial productivo de estos suelos y
establecer estrategias adecuadas de conservacion y manejo sostenible en la region.

Palabras claves: Composicion mineralogica, Suelos, Difraccion de rayos X, Capacidad de
intercambio cationico, Fertilidad del suelo.

Abstract

This study addresses the mineralogical and edaphological characterization of soils from the
municipalities of Huimanguillo and Jalpa de Méndez, in Tabasco, Mexico. Through X-ray diffraction
(XRD) analysis and soil profile descriptions, variations were identified in mineral composition and cation
exchange capacity (CEC) between the two sites. The soils from Jalpa de Méndez showed greater mineral
diversity, while those from Huimanguillo presented signs of alteration due to anthropogenic activity.
Physical properties such as texture, color, and moisture, along with biological activity and organic matter
content, also varied among the analyzed profiles. The results provide valuable information for
understanding the productive potential of these soils and for developing appropriate strategies for their
conservation and sustainable management.

Keywords: Mineralogical composition, Soils, X-ray diffraction, Cation exchange capacity, Soil

fertility.

Recibido: 26 de marzo de 2025, Aceptado: 19 de agosto de 2025, Publicado: 12 de diciembre de 2025

https://revistajobs.ujat.mx
10



Flores-Candelero et al. Journal of Basic Sciences vol. 11 (32), p. 10-19, septiembre-diciembre 2025

1. Introduccion

El estado de Tabasco presenta una diversidad edafologica importante, con suelos que han sido afectados
por actividades antropogénicas e industriales (Palma & Rincon-Ramirez, 2007). La creciente presion de la
urbanizacion, la expansion agricola y la explotacion petrolera han modificado significativamente las
caracteristicas edaficas, lo que ha generado una disminucion en la calidad de los suelos y una mayor
susceptibilidad a la erosion y degradacion (Pérez-Lopez, 2013). Investigaciones previas han demostrado
que la composicion mineral de un suelo influye directamente en sus propiedades fisicas y quimicas,
afectando su capacidad de retencion de agua, intercambio de nutrientes y resistencia a la erosion (Espejel-
Garcia et al., 2015) La interaccion de estos minerales con contaminantes organicos e inorganicos es un
factor crucial para evaluar su degradacion y potencial de recuperacion (Alberto & Abril, 2018).

La edafologia, rama de la ciencia que estudia los suelos en su ambiente natural, permite comprender los procesos de
formacion, estructura y composicion de estos, proporcionando bases cientificas para su conservacion y uso sostenible
(Zavala-Cruz et al., 2017). En este contexto, el analisis mineralogico se ha convertido en una herramienta clave en
estudios de geoquimica y manejo del suelo. Este tipo de analisis permite determinar la composicion de los suelos y su
impacto en la fertilidad y capacidad de retencion de nutrientes. Factores como la presencia de minerales arcillosos, la
porosidad y la capacidad de intercambio catiénico influyen directamente en el desarrollo de la vegetacion y la
productividad agricola. (David J. Palma-Lopez et al., 2007).

Los suelos predominantes en el estado de Tabasco son clasificados como vertisoles los cuales estan constituidos por
sedimentos aluviales del Cuaternario Reciente (0.0117 Ma) y presentan solamente horizontes superficial (A) y
material parental (C), dentro de esta clasificacion se encuentran nuestras zonas de estudio en Jalpa de Méndez y
Huimanguillo (Palma & Rincon-Ramirez, 2007), se caracterizan por una intensa meteorizacion quimica debido a las
altas temperaturas y precipitaciones, lo que favorece la lixiviacion de nutrientes esenciales y la acumulacion de
minerales secundarios (Espejel-Garcia et al., 2015). Ademas, la fertilidad del suelo esta influenciada por la cantidad
y tipo de arcillas presentes. Suelos con alto contenido de esmécticas y vermiculitas presentan una mayor capacidad de
retencion de nutrientes, mientras que aquellos dominados por cuarzo y arenas suelen ser menos fértiles y mas
propensos a la erosion (Martinez-Rodriguez et al., 2021). La presencia de 6xidos de hierro y aluminio también puede
afectar la disponibilidad de fosforo, un elemento esencial para el crecimiento de las plantas (Cejudo & Herrera-
Caamal, 2019).

En estudios recientes, se ha encontrado que los suelos de regiones tropicales, como Tabasco, presentan un proceso
acelerado de lixiviacion debido a la alta precipitacion, lo que reduce la disponibilidad de nutrientes esenciales
(Quintero Ramirez et al., 2017). La influencia de actividades humanas como la deforestacion y la expansion agricola
ha intensificado la pérdida de nutrientes y la compactacion del suelo, afectando su estructura y porosidad (Palma &
Rincon-Ramirez, 2007). Ademas, la contaminacion por hidrocarburos y metales pesados ha modificado la
composicion quimica de los suelos, lo que puede generar efectos adversos en los ecosistemas y en la produccion
agricola (Gonzalez-Ruiz et al., 2015). Este estudio se enfoca en el estudio de los suelos de Huimanguillo y Jalpa de
Meéndez mediante su mineralogia. La composicién mineraldgica permitira evaluar la influencia de estos minerales en
la calidad del suelo, proporcionando informacion clave para el disefio de estrategias de manejo y conservacion
sostenible.

2. Metodologia

2.1 Recoleccion de muestras

El estudio se realizd6 mediante la recoleccion de muestras de suelo en los municipios Roberto Madrazo
Pintado, Huimanguillo (UTM 15 Q 434925.00, 1976676.00) y en Chacalapa Jalpa de Méndez, Tabasco
(UTM 15Q 488505.00, 2006871.00), seleccionando tres horizontes en cada sitio de muestreo. Se
establecieron protocolos de muestreo siguiendo las recomendaciones de la Norma Oficial Mexicana NOM-
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021-SEMARNAT-2000 (Secretaria de Medio Ambiente y Recursos Naturales [SEMARNAT], 2000)para
garantizar representatividad y evitar contaminacion cruzada.

2.2 Descripcion de perfiles

La descripcion del perfil del suelo se realizo conforme a los lineamientos establecidos por la norma NMX-
AA-132-SCFI-2006, la cual proporciona una guia estandarizada para la caracterizacion morfologica de los
horizontes del suelo en campo.

2.3 Tratamiento de las muestras

Las muestras fueron secadas a 60°C en una estufa de laboratorio, para su posterior disgregacion y tamizado
con una malla de 2 mm para eliminar residuos gruesos y obtener una granulometria uniforme (Palma-Lopez
et al., 2020).

2.4 Caracterizacion textural

Se utilizé el método del hidrémetro de Bouyoucos, midiendo la velocidad de sedimentacion de particulas
suspendidas determinando asi las proporciones de arena, limo y arcilla en el suelo (Gabriels & Lobo, 2006).

2.5 Analisis mineralogico

Se realiz6 mediante difraccion de rayos X (DRX) en un difractometro de polvo modelo Bruker D8 Advance
con radiacion CuKao, operando a 40 kV y 30 mA. Se obtuvieron difractogramas en un intervalo de 5° a 70°
20, con un paso de 0.02° y un tiempo de conteo de 1s por paso (Gonzalez-Ruiz et al., 2015). La
identificacion de fases minerales se realizo utilizando la base de datos del International Centre for
Diffraction Data (ICDD).

2.6 Nutrientes esenciales

El analisis de calcio, magnesio, potasio y sodio permite evaluar la capacidad de intercambio catidonico (CIC)
del suelo, indicador clave de fertilidad. La CIC se determino utilizando el método de acetato de amonio a
pH 7.0, con medicion de cationes intercambiables mediante espectrometria de absorcion atdmica (Martinez-
Rodriguez et al., 2021).

3. Resultados
3.1 Perfiles edafoldgicos

El analisis de los siguientes perfiles edafologicos de las zonas de estudio permitié conocer el desarrollo y
propiedades edaficas de los horizontes como se presenta a continuacion (Palma & Rincon-Ramirez, 2007).
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Tabla 1. Descripcion del perfil de Chacalapa, Jalpa de Méndez, Tabasco

PERFIL (UTM 15 Q 488505.00, 2006871.00)

R

T 5 A

Chacalapa Jalpa de Méndez, Tabasco

muestreo
Responsable
Fecha Clima C:dhdo -
humedo
% Profundidad H140cm H240cm H3 40cm
| Longitud (cm) 0-40 40 - 80 80-120
Humedad Baja Media Media
. Arenoso Arenoso Arenoso
Matriz de suelo
franco franco franco
10 YR -
Color Munsell 10 YR-4/1 5/1 10 YR - 6/8
Franco- Franco- Franco-
Textura
arenoso arenoso arenoso
Agregados Con . Sin . Sin presencia
presencia presencia
Medianas, .
, Largas y Finas
Raices delgadas
abundantes (escasas)
(escasas)
. Con Con escasa Con escasa
Biota . . .
presencia presencia presencia
Mat’er.la Raices Raices Raices
organica
Material Sin Sin . .
. . . Sin presencia
antropogénico presencia presencia
Moteas Sin . Sin . Sin presencia
presencia presencia
. Grandesy  Anchasy .
Grietas profundas delgadas Horizontales
%A 83.88 10.68 5.44
Textura %R 77.88 10.68 11.44
%L 59.88 14.68 25.44
CIC (cmol/kg) 0.370 0.502 0.454

En todo el perfil se encontraron raices y
grietas, en la zona de estudio se encontrd
a su alrededor arboles de tinto, pasto,
aves, insectos y ganado vacuno.

Observaciones

El perfil anterior Tabla 2. Perfil de Chacalapa, Jalpa de Méndez, Tabasco) se divide en tres horizontes de
40 cm, dando un total de 120 cm de profundidad. Todos los horizontes presentan una textura franco-arenosa
lo que sefiala una capacidad moderada para retener agua y una adecuada ventilacion. Aunque la humedad
varia con la profundidad se observa un menor contenido de humedad en la capa superficial (H1, 0-40 cm)
en contraste con los horizontes mas profundos (H2 y H3), lo que indica un incremento en la evaporacion
en la zona superficial.

La escala de Munsell determina el color del terreno, que oscila entre 10 YR-4/1 en la superficie
considerando una alta presencia de materia organica mezclada con arcilla, posible reduccion temporal por
saturacion parcial de agua y poca aireacion superficial por el alto contenido de arcillas expansivas, las
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cuales causan fisuras en seco y sellado en hiimedo. El horizonte mas profundo presenta una coloracion 10
YR-6/8 indicando una mayor oxidacion de hierro por mejor drenaje interno, se tiene menor influencia de
materia organica, la coloracion brillante puede deberse al ascenso capilar y redistribucion de sales o
minerales de hierro durante los ciclos de contraccion-hinchamiento. La abundancia de raices en el horizonte
superficial es notable, pero disminuye a medida que aumenta la profundidad, rasgo de un perfil con una
mayor actividad bioldgica en las capas superiores. La biota sigue el mismo patron, mostrando una mayor
presencia en el horizonte superficial y disminuyendo en los niveles inferiores. El primer horizonte (H1)
presenta en su estructura agregados en comparacion a los horizontes mas profundos. Por otro lado, las
grietas se encuentran presente a lo largo del perfil variando en su morfologia. La variacion del CIC entre
0.370 y 0.502 cmol/kg sugiere una moderada disponibilidad de fertilidad en el suelo.

El ambiente del lugar de estudio se distingue por la existencia de arboles de tinto, pastizal, aves, insectos y
ganado vacuno, indicando una interaccion activa entre la fauna y el suelo. No se detectaron elementos
antropogénicos ni movidos en el perfil, lo que sefiala que el terreno no ha sufrido modificaciones
significativas debido a las acciones humanas.

Tomando en cuenta la informacion obtenida, el perfil del suelo analizado muestra rasgos propios de un
suelo franco-arenoso con una capacidad moderada de retencion de humedad y una actividad biologica
concentrada en su superficie. El cambio de tonalidad, la existencia de raices y biota, junto con la estructura
del terreno, indican un entorno ecoldgico que promueve el crecimiento de la vegetacion autoctona y la
interaccion con la fauna. Investigaciones adicionales podrian enfocarse en valorar la fertilidad del terreno
y su posible aplicacion en tareas agropecuarias o de preservacion del medio ambiente.
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Tabla 3. Descripcion de perfil de Roberto Madrazo Pintado Huimanguillo, Tabasco.

PERFIL (UTM 15 Q 434925.00, 1976676.00)

Lugar de Roberto Madrazo Pintado,
muestreo Huimanguillo, Tabasco
Responsable
Fecha Clima Calido
htimedo
Profundidad H130cm H220cm H3 26 cm
Longitud (cm) 0-30 30-50 30-56
Humedad Baja Baja Media
Matriz de suelo Limoso Limoso Limoso
arenoso arenoso arenoso
7.5YR 7.5 YR
Color Munsell 31 6/3 7.5 YR 8/6
Textura Areno i Areno ~ Areno — limoso
limoso limoso
Con presencia
Sin con alto grado
Agregados Grava .
presencia de
compactacion
Raices Delgadas Sin . Sin presencia
presencia
Biota Sin . Sin . Sin presencia
presencia  presencia
Materia Con Sin .
(. . . Con presencia
organica presencia  presencia
Material Con Con . .
- . . Sin presencia
antropogénico  presencia presencia
Con .
Con . Con presencia
Moteas . presencia .
presencia ) naranja
naranja
Grietas Sin . Sin . Sin presencia
presencia  presencia
%A 78.46 3.96 17.58
Textura %R 67.88 0.11 32.02
%L 63.18 0.37 36.46
CIC (cmol/kg) 25.0 25.0 25.0
En todo el perfil se observo un suelo
Observaciones pegajoso con una porosidad fina, a sus

alrededores poca vegetacion, ganado y
pasto humidicola.

El perfil anterior (Tabla 2) se divide en tres horizontes con una profundidad total de 56 cm de espesor,
perfil el cual es de un clima calido-htimedo.

La textura sugiere ser un suelo areno-limoso a lo largo del perfil lo que indica poca estabilidad en el suelo.
La humedad se observa baja en los primeros dos horizontes y aumenta en el tercero, por lo cual se sugiere
mayor retencion de agua a profundidad.
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Respecto a la escala de Munsell el primer horizonte es de color 7.5 YR 3/1, el segundo 7.5 YR 6/8 y el
tercero 7.5 YR 8/6. El cambio de color respecto a la profundidad podria estar vinculada con la reduccion
de la materia organica y la existencia de moteados de color naranja en los horizontes profundos, que sefialan
procesos de oxidacion o variaciones en la saturacion del agua.

La estructura del suelo varia en cada horizonte, en el H1 existe presencia de grava, por otro lado, en el H3
se presenta un alto grado de compactacion lo que limita la infiltracion del agua. Por la ausencia de grietas
se ve influenciada la permeabilidad del suelo.

Se encontro6 presencia de raices delgadas en el H1, sin embargo, no hubo presencia de macroorganismos.
Se hace énfasis en la presencia de material antropogénico en el horizonte uno y dos, lo que sugiere actividad
humana. Estos factores junto con la compactacion y baja porosidad afectan al suelo a retener la vegetacion.
El CIC es alto en todos los horizontes, lo que indica un suelo con alta capacidad para retener nutrientes,
pero la baja porosidad y compactacion limitan qué estos nutrientes lleguen a las raices de una forma mas
efectiva.

Tomando en cuenta los diferentes factores analizados del perfil del suelo de Huimanguillo, se tienen
caracteristicas que influyen en el uso del suelo y su capacidad para el crecimiento y desarrollo de la
vegetacion en él. Debido a la presencia de material antropogénico y moteas se tienen procesos de oxidacion
que afectan el suelo a un largo plazo. La compactacion y porosidad podria mejorarse implementando
técnicas garantizando un mejor uso del suelo.

3.2 Difraccién de Rayos X

Los difractogramas obtenidos del analisis de DRX fueron comparados con la base de datos PDF-2 del ICDD
para identificar las fases mineralogicas presentes en los suelos de estudio. Los resultados mostraron la
presencia predominante de Cuarzo (PDF 01-070-7344), Moscovita (PDF 04-012-1956), Albita (PDF 01-
072-8434):

Como se observa en la figura 1; se considera que la presencia de una mayor variedad de minerales en el
suelo de Jalpa de Méndez es debido a un mejor manejo del suelo, lo que refleja la variedad de minerales
que se encuentra en este.

Por el contrario, en el suelo de Huimanguillo la presencia predominante de la sefial de cuarzo y una minima
variedad de otras sefiales da a entender que este suelo se ha visto afectado por la actividad antropogénica
considerablemente al punto de no encontrar sefiales de otros minerales debido a que estos han sido
afectados, por lo que se tendra que realizar una remediacion de este suelo
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Figura 1. Difractograma de los suelos muestreados
Cartas cristalograficas: Cuarzo (Q) PDF 01-070-7344, Moscovita (M) PDF 04-012-1956, Albita (Al) PDF 01-072-
8434.

4. Conclusiones

Este estudio confirma que los suelos de Tabasco presentan diferencias mineralogicas y edafolégicas. Los
suelos de Huimanguillo tienen menor retencion de nutrientes debido a su composicion y estructura, estos
son acidos con bajos niveles de fertilidad nativa con un lento drenaje interno, ademas siendo afectado por
actividades agricolas, correspondiendo con lo mencionado por (Palma-Lopez, 2007). Mientras que los
suelos de Jalpa de Méndez muestran una mayor diversidad mineraldgica, pero con menor capacidad de
retencion de nutrientes, problemas de anegamiento y falta de aireacion (Palma-Lopez, 2007). Estos
hallazgos son relevantes para la gestion del uso del suelo en la region y pueden contribuir a estrategias de
conservacion y rehabilitacion.

Ademas, se resalta la importancia de continuar con estudios geoespaciales para identificar patrones de
distribucion mineralogica y evaluar su impacto en la productividad agricola y forestal. La incorporacion de
técnicas avanzadas como la espectroscopia y analisis isotopico complementaria los resultados obtenidos en
este estudio, proporcionando una visién mas amplia sobre la evolucion del suelo en Tabasco. La adopcion
de estrategias de remediacion basadas en estudios mineraldgicos permitira una gestion sostenible del suelo,
contribuyendo a la seguridad alimentaria y la proteccion del medio ambiente.
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Resumen

Este estudio presenta la sintesis y caracterizacion del 6xido de zinc (ZnO) mediante combustion
en estado solido, y su aplicacion en la fotodegradacion del 4-nitrofenol (4-NP). El ZnO obtenido
mostré una estructura cristalina hexagonal tipo wurtzita. La espectroscopia UV-Vis revel6 un band
gap de 3.31 eV y un area superficial especifica de 0.63 m?/g. Este oxido de zinc presento actividad
fotocatalitica en la degradacion de 4-Nitrofenol (4-NP). Estos resultados demuestran que la
combustion en estado solido es un método eficaz para producir ZnO con propiedades 6ptimas para
aplicaciones ambientales, sin necesidad de agentes quimicos adicionales.

Palabras claves: ZnO, Fotocatalisis, 4-Nitrofenol, Combustion en estado solido.

Abstract

This study presents the synthesis and characterization of zinc oxide (ZnO) through solid-state
combustion and its application in the photodegradation of 4-nitrophenol (4-NP). The obtained ZnO
exhibited a hexagonal wurtzite crystal structure. UV-Vis spectroscopy revealed a band gap of 3.31
eV and a specific surface area of 0.63 m*g. This zinc oxide demonstrated photocatalytic activity in
the degradation of 4-nitrophenol (4-NP). These results show that solid-state combustion is an
effective method for producing ZnO with optimal properties for environmental applications, without
the need for additional chemical agents.

Keywords: ZnO, Photocatalysis, 4-Nitrophenol, Solid-estate combustion
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1. Introduccion

El o6xido de zinc (ZnO) es un material semiconductor de gran interés debido a sus propiedades unicas, como
su amplia banda prohibida (~3.37 eV), y sus diversas aplicaciones en campos como la fotocatalisis, sensores
[1], [2], dispositivos optoelectronicos y materiales antimicrobianos [3], [4]. La morfologia y las propiedades
estructurales del ZnO juegan un papel crucial en su rendimiento en aplicaciones especificas, por lo que la
sintesis controlada de ZnO con caracteristicas morfologicas deseadas ha sido objeto de numerosos estudios
cientificos [5]. Diversos métodos de sintesis, tales como la precipitacion quimica, sol-gel, hidrotermal y
deposicion por vapor quimico, han sido empleados para producir ZnO con variadas morfologias, como
nanorods, nanoflowers, nanospheres y nanosheets [6], [7], [8]. Estas morfologias pueden influir
significativamente en las propiedades Opticas, electronicas y cataliticas del ZnO. La sintesis de ZnO con
morfologias especificas, como nanorods y nanoplates, puede optimizar sus propiedades cataliticas. Las
estructuras jerarquicas tridimensionales del ZnO han mostrado un rendimiento mejorado en la produccion
de hidrégeno debido a la mayor area superficial y la mejor separacion de cargas [9]. El 6xido de zinc (ZnO)
ofrece ventajas significativas sobre el 6xido de titanio (TiO2) en aplicaciones fotocataliticas debido a su
mayor movilidad electronica y menor tasa de recombinacion de pares electron-hueco. El ZnO presenta una
mayor eficiencia en la absorcion de luz UV y una mejor capacidad de separacion de cargas, lo que mejora
la eficiencia fotocatalitica [10], [6]. Ademas, la facilidad de dopaje y la capacidad de formar diversas
morfologias nanoscopicas hacen que ZnO sea mas versatil y eficiente en la degradacion de contaminantes
y la produccion de hidrogeno [11]. Las estructuras jerarquicas del ZnO, como nanoflowers y nanorods, han
demostrado ser altamente efectivas en la fotodegradacion de contaminantes, incluyendo tintes y compuestos
organicos volatiles. Estas morfologias ofrecen una mayor area superficial y una mejor dispersion de la luz,
mejorando la actividad fotocatalitica [12]. Estudios han demostrado que los nanorods y nanosheets son
efectivos en la degradacion del 4-nitrofenol, un contaminante organico comun. Estas estructuras permiten
una mejor interaccion con el contaminante y una mayor generacion de especies reactivas de oxigeno [13].
La sintesis del ZnO con estructuras jerarquicas ha mostrado una eficiencia mejorada en la fotodegradacion
de 4-nitrofenol, atribuido a la alta area superficial y la 6ptima exposicion de los sitios cataliticos [14]. En
este estudio, presentamos un analisis de la morfologia y de las propiedades fisicoquimicas del ZnO obtenido
mediante nuestro método de sintesis, “Combustion en estado s6lido”, y evaluamos la actividad catalitica en
la fotodegradacion del 4-Nitrofenol.

2. Metodologia Experimental

2.1 Sintesis del oxido de zinc

Se utilizo el reactivo nitrato de zinc, el cual se disolvié en 100 mL de agua la cantidad necesaria para obtener
1 gramo de 6xido de zinc. Se mantuvo en agitacion por 12 horas. Posteriormente se recristalizo en nitrato
de zinc extrayendo el disolvente por evaporacion lenta a 60 °C por 24 h. El producto obtenido fue calcinado
con una rampa de 2 °C/min hasta alcanzar los 500 °C y se mantuvo a esa temperatura por 4 h. Esta
metodologia de sintesis se le ha denominado combustion en estado solido.

2.2 Difraccion de rayos X

El analisis de difraccion de rayos X se utilizé para determinar la composicion de las fases del polvo. La
difraccion de rayos X (XRD) se realizo utilizando un difractometro Bruker D2 PHASER con una fuente de
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radiacion Co Ka (A = 0,179 nm) durante un tiempo de analisis de 660 segundos. El analisis se llevo a cabo
en el rango de 20° a 80°. La base de datos JADE 6 se utilizé para completar la identificacion de las fases.

2.3 Espectroscopia de Reflectancia Difusa UV-Vis (DRS UV-Vis)

El espectro de reflectancia difusa UV-Vis se realizé en un espectrofotometro Varian Cary 300, en el rango
de 800 a 200 nm, equipado con una esfera integradora. Se utilizo BaSO4 con una reflectividad del 100%
como referencia. La energia de band gap (Eg) de la muestra se estimo a partir de los espectros de absorcion
UV teniendo en cuenta la Ecuacion 1.

« (E) o (E — E,)™ Ec. 1

Donde o( E) es el coeficiente de absorcion para un foton de energia E, y m=4 para una transicion indirecta
entre bandas.

2.4 Adsorcion-Desorcion de Nitrégeno

La determinacién del area especifica, diametro y volumen de poro de los catalizadores se llevo a cabo
mediante la técnica de fisisorcion de N,. Se realizd en un equipo de medicion de area superficial,
MICROMERITICS TRISTAR 3020 IT a 77 K (-196 °C). Para eliminar impurezas, se pesé una muestra de
0.1 g y se desgasifico durante 3 horas a 300 °C. Los datos se analizaron utilizando el método BET
(Brunauer, Emmet y Teller) y la distribucion de poros se determind mediante DFT.

2.5 Prueba fotocatalitica

Las pruebas de degradacion fotocatalitica se llevaron a cabo en un reactor fotoquimico provisto de
irradiacion de luz UV (A =365 nm) utilizando una ldmpara de mercurio (25 W). El fotocatalizador (0.1 g/L)
se dispers6 en 200 mL de una solucion acuosa de 4-nitrofenol (4-NP) (15 ppm) a pH natural. Como fuente
de oxigeno, se proporciono un flujo de aire (3.2 L/min) para obtener 8.4 mg/L de oxigeno disuelto. Antes
de encender la lampara, la suspension se agitd continuamente a 700 rpm durante 60 minutos en la oscuridad
para asegurar el establecimiento de un equilibrio de adsorcion-desorcion entre el fotocatalizador y el
contaminante. El sistema se mantuvo con agua circulante a temperatura ambiente y confinado en una caja
oscura con proteccion contra luz UV. Aproximadamente 3 mL de la suspension fueron muestreados y
filtrados (nylon, 0.45 um) para determinar la concentracion residual de 4-NP mediante un
espectrofotometro UV-Vis (Varian, Cary 300). A partir de los resultados obtenidos, se calculo el porcentaje
de degradacion. Para determinar los porcentajes de degradacion se utilizo la Ecuacion 2.

4NP°]-[4NP]

x(%) = [ TNl Ec.2

Donde [4NP°] (ppm) es la concentracion cuando se enciende la luz para iniciar el proceso de
fotodegradacion y [A] (ppm) es la concentracion después de 6 horas de irradiacion.
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3. Resultados y Discusion

El espectro UV-Vis del 6xido de zinc (ZnO) sintetizado muestra una absorcion en el rango de 300-400 nm,
con un borde de absorcion alrededor de 375 nm, véase Figura 1. Este comportamiento es tipico del ZnO y
corresponde a su transicion de banda prohibida (band gap). Se calculo la energia del band gap y el valor es
aproximadamente 3.31 eV. La fuerte absorcion en el rango UV indica que el material sintetizado tiene una
estructura adecuada y esta libre de contaminantes que puedan alterar sus propiedades oOpticas. Esto es
confirmado en literatura por los valores similares de band gap para ZnO puro, alrededor de 3.26 eV y 3.3
eV, utilizando espectroscopia UV-Vis [15]. Estos resultados sugieren que el método de combustion en
estado solido es eficaz para la sintesis del ZnO, produciendo materiales de alta pureza con propiedades
oOpticas coherentes con las reportadas en la literatura cientifica [16].
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Figura 1. Espectro de absorcion del oxido de zinc.

El patron de difraccion de rayos X (XRD) de la muestra de ZnO muestra varias sefiales en 20 = 31.8°, 34.4°,
36.2°, 47.5°, 56.6°, 62.8°, 66.3°, 67.9° y 69.1°, véase Figura 2. Estos picos corresponden a los planos
cristalinos (100), (002), (101), (102), (110), (103), (200), (112) y (201) del ZnO con estructura wurtzita,
respectivamente; véase Figura 2. La presencia de estas sefiales confirma que la muestra de ZnO tiene una
estructura cristalina hexagonal tipo wurtzita. Este resultado es consistente con los datos de la carta de
referencia JCPDS No. 01-079-0205 para ZnO.
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Figura 2. Difraccion de rayos x del Oxido de Zinc.

La isoterma de adsorcion-desorcion de nitrogeno proporciona informacion sobre las propiedades texturales
del material, como el area superficial especifica, el volumen de poros y la distribucion de tamafio de poros.
Los resultados de adsorcion-desorcion isotérmica de la muestra de ZnO muestra en la Figura 3. La isoterma
del ZnO se asemeja a una isoterma tipo IV segun la clasificacion de la IUPAC. Este tipo de isoterma es
caracteristico de materiales mesoporosos, que presentan poros con tamafios en el rango de 2 a 50 nm [17].
La adsorcion se incrementa a medida que la presion relativa se aproxima a 1, presentando un incremento
abrupto el cual es asociado a la condensacion capilar en mesoporos. En relacion con el bucle de histéresis
parece similar al tipo H2, que est4 asociado con materiales que tienen poros de botella de tinta o sistemas
de poros desordenados. Esta histéresis se caracteriza por una rama de desorcion mas inclinada que la de
adsorcion. La distribucion de tamafios de poro obtenida mediante DFT confirma que el material tiene una
estructura porosa compleja, con una combinacion de mesoporos pequefios (2-5 nm) y medianos a grandes
(10-15 nm). Esto es consistente con la isoterma de adsorcion-desorcion que mostré un bucle de histéresis
H2. La muestra de ZnO presenta un area superficial especifica de 0.63 m?/g. Aunque este valor es bajo,
sigue siendo suficiente para proporcionar una superficie activa.
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Figura 3. Proceso de adsorcion-desorcion de nitrogeno (A) y distribucion de tamaiio de poro (B).

La Figura 4 presenta la degradacion del 4-nitrofenol (4-NP) normalizada en funcion del tiempo. La zona en
gris representa la etapa de equilibrio en oscuridad. Durante la etapa de equilibrio, la concentracion de 4-NP
disminuye ligeramente antes de la irradiacion UV. Este fenomeno se debe a la adsorcion del 4-NP en la
superficie del ZnO. La adsorcion previa del 4-NP en la oscuridad asegura que una fraccion significativa del
contaminante esté disponible en la superficie del ZnO cuando comience la irradiacion UV. Una vez iniciada
la irradiacion UV, se observa una disminucion significativa y continua de la concentracion de 4-NP. El ZnO
genera pares electron-hueco. Estos electrones y huecos pueden reaccionar con las moléculas de agua y
oxigeno adsorbidas en la superficie del ZnO, generando especies reactivas de oxigeno (ERO) como
radicales hidroxilos [18]. La alta cristalinidad del ZnO, proporciona sitios activos que mejoran la eficiencia
fotocatalitica. Estos defectos actiian como centros de captura para los electrones y huecos, reduciendo la
recombinacion y aumentando la generacion de ERO [19].
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Figura 4. Concentracion normalizada del 4-Nitrofenol en funcién del tiempo.
4. Conclusiones

El método de Combustion en Estado Sélido para la sintesis de ZnO ha demostrado ser una técnica efectiva
para producir materiales con propiedades Opticas, estructurales y cataliticas deseables. Las
caracterizaciones realizadas confirman que el ZnO sintetizado presenta una alta cristalinidad, defectos
estructurales controlados, una adecuada area superficial especifica y una notable eficiencia fotocatalitica en
la degradacion del 4-NP. Estos resultados sugieren que este método de sintesis es una alternativa factible y
eficiente para la produccion de fotocatalizadores basados en ZnO, libres de agentes quimicos que puedan
interferir o influenciar las propiedades del material.
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Resumen

En este articulo de difusién se demuestran algunas propiedades basicas del kernel de calor de
Dirichlet. En teoria de probabilidad este objeto matematico es la densidad de transicién de un pro-
ceso de Markov matado. En este trabajo se consideran procesos fuertes de Markov simétricos que
podrian ser discontinuos. Entre las propiedades elementales probadas se encuentran: la continuidad,
la simetria y la ecuaciéon de Chapman-Kolmogorov. Se presenta también una aplicacién importante
a la teoria de ecuaciones semilineales de tipo reaccién-difusién no auténomas con condiciones de
frontera de Dirichlet. La difusién en este caso es el generador del proceso de Markov asociado, el
cual se conoce que podria ser un operador integro-diferencial no local.

Palabras claves: Kernel de calor de Dirichlet, Proceso de Markov fuerte simétrico, densidad de
transicion de Dirichlet, tiempo de salida, proceso matado, solucion mild, explosion.

Abstract

In this diffusion article some basic properties of the Dirichlet heat kernel are demonstrated. In pro-
bability theory this mathematical object is the transition density of a killed Markov process. In this
work, symmetric strong Markov processes that could be discontinuous are considered. Among the
basic properties demonstrated are: continuity, symmetry, and the Chapman-Kolmogorov equation.
An important application to the theory of non-autonomous semilinear reaction-diffusion equations
with Dirichlet boundary conditions is also presented. Diffusion in this case is the generator of the
associated Markov process, which is known to be a non-local integro-differential operator.

Keywords: Dirichlet heat kernel, symmetric strong Markov process, Dirichlet transition density,
exit time, killed process, mild solution, blow up.

Recibido: 27 de marzo de 2025. Aceptado: 6 de noviembre de 2025. Publicado: 12 de diciembre de 2025.

1. Introduccion

En la actualidad, debido a su importancia tanto en la teoria como en las aplicaciones, hay
un gran interés en el estudio de procesos de Markov simétricos. El proceso estocédstico asociado al
operador laplaciano, por ejemplo, es un proceso de Markov simétrico llamado movimiento browniano
y ha sido usado en diferentes dreas del conocimiento cientifico (e.g. la fisica, biologia, ingenieria,
mecanica cuantica, finanzas, etc.). El movimiento browniano tiene trayectorias continuas de réapido
crecimiento sin derivada en ningin punto y ha permitido modelar sistemas con un gran nimero
de perturbaciones aleatorias. La distribucion del desplazamiento de cada particula involucrada en
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esta difusién es gaussiana; luego es posible calcular el desplazamiento promedio, asi como también
que tanto se dispersa éste del valor real, es decir, su varianza.

Ahora bien, cuando la distribucién del desplazamiento de cada particula tiene un decaimiento
asintoticamente lento, tipo polinomial, a este prototipo de difusién se le conoce en la literatura como
difusién anémala y es de especial interés en mecanica estadistica. En este movimiento anormal no
es posible, en algunos casos, calcular el desplazamiento promedio de las particulas y cuando lo es,
desafortunadamente no es posible determinar su varianza. Ejemplos que exhiben difusién anémala
son: el movimiento de particulas en flujos turbulentos, el transporte de carga en sdlidos anémalos, las
micelas disueltas, los vidrios porosos, el enfriamento por laser con retroceso secundario y la dindmica
cadtica. Es bien sabido que la difusién andémala puede ser adecuadamente descrita mediante las
trayectorias discontinuas del proceso de Lévy simétrico a-estable y su generador A, = —(—A)O‘/ 2,
a € (0,2) (laplaciano fraccionario). El lector interesado en como se hace esto y en otras areas de
aplicacién, puede consultar [1, 7, 27] y las referencias alli dadas.

También en matemadticas financieras se ha observado que, aunque los procesos a-estables pro-
porcionan mejores representaciones de datos financieros que los procesos gaussianos, los datos finan-
cieros tienden a volverse més gaussianos en una escala de tiempo mas larga. Los llamados procesos
a-estables relativistas tienen esta propiedad requerida: se comportan como procesos a-estables
en pequena escala y se comportan como el movimiento browniano a gran escala. Otros procesos
que tienen este tipo de propiedad se pueden obtener “atenuando” o “truncando” los procesos a-
estables, es decir, multiplicando las densidades de Lévy de los procesos a-estables con factores
decrecientes estrictamente positivos y completamente mondtonos. Este procedimiento genera una
clase importante de procesos, llamados procesos de Lévy simétricos a-estables truncados, que sur-
gen de manera natural en aplicaciones donde solo se permiten saltos hasta un tamano prefijado
(ver [20] y las referencias alli dadas).

Si se conoce de manera expresa la densidad de transicién p(t,x,y) de un proceso de Markov
X, entonces es evidente que el estudio de sus trayectorias es menos complicado y en consecuencia
el analisis del fenémeno asociado. Sin embargo, excepto en algunos casos especiales, obtener una
expresion explicita de p(¢, x,y) (en caso de que exista) suele ser imposible. En el campo de ecuaciones
diferenciales parciales, a la densidad de transicién p(t,z,y) se le conoce como kernel de calor. Si
L denota el generador del proceso de Markov X, se dice entonces que p(t,x,y) es la solucién
fundamental de la ecuacion del calor dyu = Lu. Por lo tanto, conocer propiedades y estimaciones
precisas de p(t,z,y) es una cuestiéon fundamental tanto en la teoria de la probabilidad como en
ecuaciones diferenciales parciales. Estos tipos de estudios se han realizado desde hace mas de un
siglo para procesos de difusién, aunque para procesos discontinuous apenas se logré comenzar en
este siglo (ver [3] y referencias dadas alli). No obstante, estudiar las propiedades y estimaciones del
kernel de calor de Dirichlet pp (¢, z,y), el cual es la solucién fundamental del problema dyu = Lu,
u|pe = 0, D dominio en R? es todavia més complicado. En teorfa de probabilidad, el kernel de
calor de Dirichlet pp(t, z,y) es la densidad de transicién asociada al proceso matado Xp. Una de
las razones por la que es tan complejo conocer sus propiedades y estimaciones, viene directamente
de la definicién de la misma, a saber

pD(thvy) :p(t7xay)_El‘{p(t_TDyX(TD)vy)vt>TD}7 t>07 ‘TuyeRda (1)

donde 7p es la primera vez que el proceso X abandona el dominio D. Nétese que al ser pp(t, z, y) una
resta, una caracteristica tan béasica como la positividad (recuerde que una densidad de transicién
es no negativa) deja de ser inmediata.

En la mayoria de los trabajos que obtienen estimaciones y propiedades de pp(t, z,y), se utilizan
estimaciones y propiedades conocidas de p(t,x,y). El objetivo de este trabajo es proporcionar
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demostraciones de propiedades elementales de pp(t,x,y) para una clase de procesos de Markov
fuertes, simétricos, continuos por la derecha y cuasi continuos por la izquierda (ver el inicio de la
Seccién 2). Cabe destacar que esta clase de procesos incluye importantes procesos de Lévy y procesos
de Feller que surgen tanto en matematica pura como en la aplicada (ver Ejemplos 2.1, 2.2 y 2.3).
El resultado principal de este articulo es el Teorema 4.1 y las propiedades elementales probadas
son: la ecuacién de Chapman-Kolmogorov, la continuidad y la simetria. La mayoria de trabajos
que se conocen sobre estimaciones de pp(t,x,y) (en el caso de procesos de Markov discontinuos),
dejan al lector la prueba de tales propiedades elementales e indican que es suficente guiarse de las
demostraciones para el caso gaussiano, usando las estimaciones conocidas de p(t, z,y). La referencia
estandar recomendada para esta labor es [15]. Sin embargo, consideramos que las pruebas no son tan
directas como en el caso gaussiano, ya que en este caso se utiliza la continuidad de las trayectorias
del movimiento browniano. Otra ventaja empleada en tales pruebas, es que se conoce de manera
explicita la funcion de densidad de probabilidad de transicién del movimiento browniano, la cual
es unimodal, isotrépica y uniformemente continua en R% x R? para cada t > 0. Estas bondades han
permitido obtener diferentes demostraciones de dichas propiedades basicas a lo largo de los anos.
Consideramos entonces que este trabajo de difusion atendera ese vacio frecuentemente ignorado en
la literatura y motivard a los lectores a conocer mas sobre tales procesos discontinuos. Mas atn, en
nuestra 1ltima seccién presentamos una aplicaciéon de tales propiedades a la teoria de ecuaciones
diferenciales parciales parabdlicas semilineales no auténomas. Cabe destacar que, en este articulo,
las demostraciones de los resultados son dadas en forma maés detallada que las presentadas en las
referencias [4, 6, 15, 16, 18, 21, 24]. En cada uno de nuestros resultados y demostraciones, donde
utilizamos alguna de las anteriores fuentes bibliogréaficas, indicamos la cita, el resultado especifico
en el cual nos basamos y su pagina. Incluso, en algunos casos, algunas ideas de tales fuentes fueron
adaptadas para poderlas aplicar en el contexto de nuestros procesos de interés.

Este trabajo estd organizado de la siguiente manera: En la Seccién 2 introducimos el proceso
de Markov con el que estaremos trabajando y presentamos algunos ejemplos. En la Seccién 3 pro-
bamos propiedades del tiempo de salida 7p. Estas propiedades son importantes ya que la densidad
de transicién pp(t,z,y) se expresa en términos de 7p (ver (1)) y las trayectorias de X podrian
tener saltos. La Seccion 4 versa sobre las propiedades elementales mencionadas anteriormente. Se
presentan demostraciones de ellas y de algunas otras propiedades. En la Secciéon 5 mostramos
una aplicacién de las propiedades de pp(t,z,y) a la solucién de una ecuacién de Cauchy de tipo
reaccién-difusién, con condiciones de frontera de Dirichlet.

En este articulo usamos la siguiente notacién: | - | es la norma euclidiana en R?, d(F,G) es la
distancia euclidiana entre F,G C R%, my(dz) = dz es la medida de Lebesgue en RY, B(D) es la
o-algebra de Borel en D, CZ(D) es el espacio de todas las funciones reales continuas de clase CP,

con soporte compacto contenido en D, p = 0,1,2,...,00 y C§(D) = CE(D); D C R? (convenimos
que CY(D) = C.(D) y CJ(D) = Cy(D)). By(z) es la bola abierta de radio r > 0 centrada en z € R,
| 1lps p € [1,00], es la norma en LP(D), D C R%

2. Proceso de Markov simétrico y ejemplos

Sea X = (Q,}",P,}},X(t),Px;t > 0,x € ]Rd) un proceso de Hunt!, es decir, X es un proceso
de Markov (temporalmente homogéneo) con las siguientes propiedades:

[H1] : X es continuo a la derecha.

'Para el lector interesado, [6] y [16] son referencias clésicas sobre este tipo de procesos. En [6] los procesos de Hunt
son llamados procesos estdndar. El libro [18] contiene en su apéndice una introduccién concisa sobre estos procesos,
ya que el objetivo de los autores es estudiar formas de Dirichlet para procesos de Markov generales.
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[Ho] © X es quasi continuo a la izquierda.
[Hs] : X tiene la propiedad fuerte de Markov.
[Hy] : X es normal, es decir, P,{X(0) =2} =1, 2 € R%,

Suponemos adicionalmente que X tiene una densidad de probabilidad de transicién p(¢, z,y) tal
que:

[p1] :  Para cada t > 0, p(t, e, ) es continua en R? x R?
2]+ p(t,2,y) = p(t,y, @), t >0, z,y € R%.
[ps]: M :=sup{p(t,x,y);t > 0, |[x — y| > 6} < o0

Observe que [po] implica que X es simétrico. Dado B € B(R?) definamos la variable aleatoria
7p = inf{t > 0; X (t) ¢ B}. Vamos a suponer que la funcién de distribucién de la variable aleatoria
TB;(x) Satisface:

[F-] 2 lim sup Po{7p,) <t} =0, >0.
t}0 zeRd

La variable aleatoria 75 es el primer instante o tiempo de salida del conjunto B. Es inme-
diato que si A C B, entonces 74 < 7. Enunciamos a continuacién otras propiedades elementales.
Los resultados propuestos son conceptos técnicos frecuentemente utilizados y sus demostraciones
usualmente son omitidas en la mayoria de los textos. Cabe destacar que, en el caso de trayectorias
continuas, las demostraciones son directas. Sin embargo, dado que ese no es nuestro caso, presenta-
remos con detalle dichas pruebas. En lo que sigue 2 3 w — 6;,(w) € 2 denota el operador traslacién
que satisface X (s) o 0, (w) = X (s +t)(w), s,t > 0.

Proposicién 2.1. Sea B € B(R?).

1. 1B es terminal, es decir, si T es un tiempo de paro, entonces Tg =1 + 7 0O sobre el evento
{T < TB}.

2. Po{rp >0} =1, z € B°.
3. Si B es abierto, entonces X (1) ¢ B sobre el evento {Tp < oo}.

4. Si B es cerrado, entonces la funcion de distribucion de Tp estd dada por el siguiente limite

Po{rp > t} = lim P{X(kt/2") € Bik =1,...,2" — 1},

Demostracion. 1. Si 7 = 00, el resultado es inmediato. De la definiciéon de infimo, se tiene que
T+ pobr=inf{t >T;X(t) ¢ B} (2)

y asi, nuevamente de la definicién de infimo 75 < T 4+ 7 o Op. Para probar la igualdad
procederemos por contradiccién. En efecto, supongamos que existe w tal que 7p(w) < T'(w) +
7B © Or(w). Entonces, de la definicién de infimo, existe ¢ > 0 tal que 73(w) < t < T'(w) +
7B 0 Or(w) v X(t,w) ¢ B. Puesto que T'(w) < 7p(w), de lo anterior y (2), se obtiene que
T(w) + 78 0 O7(w) < t, lo cual es la contradiccién deseada.
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2. Si tp(w) = 0, entonces existe una sucesién decreciente (t,) tal que lim,, o0 t,, = 0, X (5, w) €
B¢. Si adicionalmente se tiene que X (0,w) = z, por [Hi] se llega a que B° 5 z = X(0,w) =
limy, 00 X (tn,w) € BC. Luego, de [Hy4] tenemos que P, {7 = 0} = P, {75 =0, X(0) = 2} = 0.

3. Usando el argumento anterior puede demostrarse que si 7p(w) < 00, entonces se tiene que
X (tp(w),w) € B¢ = B“.

4. Paracadat >0y n e Nsea Jy(n) = {jp :=Fkt/2" k=1,...,2" — 1} y sea J; := U2, Ji(n).
Entonces J; C (0,¢) y J; = [0,t]. Usando que B es cerrado y [H;], puede probarse que
{X(s) € B,s € (0,t)} = {X(j) € B,j € Ji}. Pero en general, de la definicién de infimo,
{8 >t} = {X(s) € B,s € (0,t)} y asi {7 > t} = NS> {X () € B;k =1,...,2" — 1}.
El resultado es ahora consecuencia del teorema de la convergencia mondétona (aplicado a las
funciones indicadoras de los complementos de estos eventos).

O

Presentamos a continuacién algunos ejemplos de procesos de Markov que cumplen las propie-
dades [Hi], [Ha|, [H3], [Hal, [p1], [p2], [p3] ¥ [Fr]- Junto a cada proceso dado se presenta una forma
no trivial de su generador.

Ejemplo 2.1. Sea X wun proceso de Lévy simétrico con densidad de probabilidad de transicion
que satisface [p1] y [ps]. Claramente X cumple [Hi|-[H4] y [p2]. Para verificar [Fr], sean 6 > 0,
B := Bs/a(r) y By := Bs/2(0). Nétese que de la Proposicion 2.1.4 y el hecho de que todo proceso de
Lévy es espacialmente homogéneo, se tiene que

P, {mg > 2t} = nlggopm{X(kt/zn) €Bik=1,...,2" -1}
s n e no__
= nlggo]PO{X(ktm )€Bosk=1,...,2" -1}
= PO{TBO Z 2t}.
Se sigue de esto y la Proposicion 2.1.2 que

lim sup P, {7'35 < t} < lim sup P, {TB < Zt} = 0.
t}0 zeRd tl0 zeRd

Presentamos a continuacion un ejemplo especifico.
Sea X un movimiento browniano subordinado, es decir, X (t ( ), , donde S =

t>0
(S’( )it > O) es un subordinador independiente del movimiento bmwma no W = (W )it > 0). Por
tanto, la densidad de probabilidad de transicion esta dada por

p(tz,y) = /O " (ams) 2= BLS (1) € ds).

lz—y|? , . . .
La funcion (47s) —d/26= "5 es uniformemente continua y uniformemente acotada sobre el conjunto
{(s,z,y);5 > 0,|z —y| > 0}, luego p(t,z,y) satisface [p1] y [p3]. Sea 1) el exponente de Laplace de
S, esto es

b(r) = vr + /000(1 — e ™u(dt), r >0,

donde v > 0, p es la medida de Lévy del subordinador S. Si L es el generador de X, entonces se
conoce que Lf(x) = —p(—A)f(z), z € RY, f € CX(RY) (ver [2, Teorema 3.3.15, p. 145]).

Los movimientos brownianos subordinados son la fuente de miltiples operadores usados en di-
ferentes dreas de la ciencia. Algunos de ellos son: A (laplaciano); Ay == —(—=A)*2, o € (0,2)

https://revistajobs.ujat.mx 33


https://revistajobs.ujat.mx

Ceballos-Lira et al. Journal of Basic Sciences vol. 11(32), p. 29-51 , septiembre—diciembre 2025

(laplaciano fraccionario); me? — (m?/ e ® — 2/*A)/2 'm ¢ >0, a € (0,2) (operador Schrédinger
relativista fraccionario); Aq +Ag, 0 < B < a <2; A+ Ay, a € (0,2). El capitulo 3 de [2] es una
referencia bdsica acerca de la teoria general que involucra los operadores anteriores. Dicho capitulo
incluye informacion acerca de el laplaciano, el laplaciano fraccionario y el operador Schrodinger
relativista fraccionario; mientras que [12] y [11] contienen infomacion mds especializada acerca de
Ao+ Ag y A+ Ay, respectivamente.

En el siguiente ejemplo I'(+) denota la funciéon gamma. Recuerde que ésta se define por I'(x) :=
o0 yx—1,—t
Jo t*te7tdt, x> 0.

Ejemplo 2.2. Sea R? x R\ {(z,z);z € RY} 3 (z,y) — J(x,y) € [0,00) una funcién medible y
simétrica, es decir J(x,y) = J(y, ), x,y € R%. Para cualesquiera f,g € L?(R?) definamos

E(f,g) = /Rdw [f(z) = f(W)llg(z) — g9(y)]J (2, y)dzdy,

y Dom(&) := {f € L2(R%); E(f, f) < oo}. Suponga que existe una funcion creciente (0,00) > t
P(t) € (0,00) con las siguientes propiedades:

1. Existen 1,02 >0 y c1,c2 > 0 tales que

cl<f>ﬂlgmg@<f>ﬂ2, 0<r<R (3)

Log
2./0¢(S)ds<oo.

3. Existe C > 0 de modo que

¢ < J(z,y) < ¢
=yl (e —y) =Y eyl (e —yl)

(4)

Bagjo las hipdtesis anteriores (8, Dom(E)) es una forma regular de Dirichlet en L2(R?) con kernel de
saltos J, por lo que existe un proceso de Feller conservativo X que posee una densidad de transicion
continua p(t, z,y) en (0,00) x RY x R? y ademds cumple que

Ct C —anla—y|? /D1 (1) d
|x—y|dzp(]w—y])+<1>—1(t)de le=yl*/e7 07 ¢ > 0, z,y € RY, (5)

donde ax,C' >0y &1 es la inversa de

p(t,z,y) <

r2

N 2fg@d57

(ver [3, Teorema 1.2, pdg. 2833]). El hecho de que X es conservativo garantiza que p(t,z,y) es
una densidad de probabilidad de transicion, es decir, fRd p(t,x,y)dy = 1, para toda t > 0, x €
RY. La funcidon ® es estrictamente creciente y lim, o ®(r) = 0 como puede consultarse en [3,
p. 2836]. Observe que si foooﬁds = 00, entonces de (3) se sigue que lim,_ o ®(r) = co. Si

d(r) : r>0

fooo ﬁ ds < oo, entonces es claro que el limite anterior se cumple. De esta manera limy Ol(t) =

0 y limy_,0o ®71(t) = 00. Usando estos limites, (5) y que ¥ es creciente, puede probarse que p(t,x,vy)
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satisface [ps]. Finalmente, veamos que X tiene la propiedad [Fr]. En efecto, utilizando el lado
izquierdo de (3) obtenemos que, para toda r > 0,

Ct Ct
dy = /
/BT(x)C |z =yl (|z — yl) Z Bynt1,(2)\Bany(z) |$—y|d¢(|x—y|)

Ct ng(B2n+1 (JJ)) (6)

< rdw(r) ! 9(d+p1)n
't
e(r)’
donde C" = C24P174/2 J[¢1T(1 4 d/2)(2% — 1)] . Por otra parte, observe que
C 2 —1 2
(1) = / omosle—y /202 g
Q Br(z)e @71 ()?

= / Cul—te=av" gy
r/®=1(t)

< ol

para toda v > 0. La funcion I.(-) es creciente y limyo I, (t) = 0. Las relaciones anteriores y (5)

implican que
!

C't
Sin embargo, por la Proposicion 2.1.3, X(TBé(w)) ¢ Bs(z) en el evento {Tp,(y) <t} por lo que

PoA{X(t) € Bso(x), Tpy(a) < t} < Po{X(t) & Bsjo(X (Tp5(2))) TBs (@) < t}
= Ex{IP’X (5o AKX (E = TB5(@)) & Bop2 (X (TB52)) i TBs(0) < t}

< sup P {X(s) ¢ Bs;a(2)},
z€ERD s<t

donde se ha usado [Hs) en la igualdad. Ahora [F;] es consecuencia del hecho de que

Po{7p, @) < 1} < Po{X (1) & Byja(2)} + Po{X(t) € Bsa(2), 75y(a) <t}

y la desigualdad (7).

En general, es dificil encontrar una férmula explicita para el generador de un proceso de Markov
simétrico de saltos puros, incluso si este estd asociado a una forma reqular de Dirichlet. No obstante,
esto es posible si se conocen mds propiedades del kernel de saltos J. Por ejemplo, si fRd(|x —y]2 A
1)J(z,y)dy es localmente integrable y

/ |h||J(z,x + h) — J(xz,x — h)|dh < oo,
B1(0)
entonces el generador L de X tiene la forma
Lf(x) = lim [f(2) = f@)]J(x,y) dady, «€R?, e CRY),
E Bs(x)c
ver [26, Teorema 2.2, p. 404].
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Ejemplo 2.3. Sea A(z) = (aij(x);i,j =1,... ,d) una matriz de funciones reales definidas en R?
que es uniformemente eliptica y acotada, en el sentido de que existe una constante ¢ > 1 tal que

d d
ez < ZZaij(x)zizj <clz)?, z,z€R?
i=1 j=1

y RY x RN\ {(x,2);2 € R} > (2,y) = J(x,y) € [0,00) es una funcion medible simétrica tal que
existe una funcion estrictamente creciente [0,00) 3+ (1) € [0,00), con 1 (0) =0, (1) =1, que
satisface (3) y (4). En este caso las constantes positivas 31 y B2 estdn relacionadas por 1 < o < 2.
Observamos que si ¢, := 1+ c2(2 — B2) L, entonces el lado derecho de (3) garantiza que

L 7,2
/0 ) dsgc*m, r > 0. (8)

Para cada f,g € L2(R?) definamos

1
&0 = 3 [ VIA@Te@)dr+ [ 1) - f@)lole) - o)l . p)drdy
R4 R xR?
donde Dom(€) := {f € L*(RY);E(f, f) < oo}. Luego, (£,Dom(E)) es una forma regular de Di-
richlet en L2(R?) y por tanto existe un proceso de Hunt simétrico X con funcién de densidad de
transicion continua p(t,x,y) tal que

+ ie*b‘x*ywt, t>0, z,y € RY, 9)

t7a:.7 S
oY) < g =g T

donde b > 0 y su generador L estd dada por

£ = 530 g (eu@)gt@ ) +iim [ (7@ - o)

=1 j=1 el0 Be(z)°
r € R, f e CYRY) (ver [13, Teorema 1.4, p. 557]). Los lados derechos de (3) y (4) implican que
C2

J(x,y) < [T cuando |z —y| < 1. (10)

Ademds, usando (8) y argumentando como en (6) concluimos que

sup / (lz —y* A1) J(z,y)dy < sup / |z — y|*J(z,y) dy + sup / J(z,y)dy
R4 Bl(O) .B1(0)c

zeR4 zeR4 z€R4
B 1 s !
<C ds +
0 ¥(s) ¥(1)
< Cex+C'.

De de esto y (10) se puede demostrar, en forma similar a [13, p. 563], que el proceso X es conser-
vativo. Las propiedades [ps] y [Fr] son vdlidas y su demostracion es similar a la dada en el Ejemplo
2.2 pero usando ahora la desigualdad (9).
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3. Propiedades del tiempo de salida

En esta seccién presentamos algunas propiedades importantes del tiempo de salida 75. El tiempo
de salida es una variable aleatoria que nos permitira estudiar la probabilbidad de transicién del
proceso X en algtin boreliano B. Las probabilidades de transicion en B, seran estimadas mediante la
densidad de transicion de Dirichlet, la cual, como mencionamos en nuestra introduccion, se expresa
en términos del tiempo de salida. De aqui la importancia de conocer propiedades de 75. En lo que
resta de esta seccién, suponemos que B € B(RY).

En general, si una variable aleatoria es absolutamente continua respecto a la medida de Lebes-
gue, es imposible que con probabilidad positiva tome valores en el boreliano {t}, con ¢ > 0. La
siguiente proposiciéon nos dice que 7p tiene esta propiedad y su demostracién estda basada en la
prueba del Teorema 4.7 de [24, p. 11], en el contexto gaussiano.

Proposicién 3.1. Para cadat >0 y x € R? se tiene que P,{rp =t} = 0.
Demostracion. Sean t > 0y x € R%. Supongamos valida la siguiente afirmacién:
[A] : Existe s € (0,1) tal que Po{7p = s} = 0, my-c.d.q.

Usando la Proposicién 2.1.1 puede probarse que {7p =t} = {rp >t —s,t — s+ 150 6;_s = t}.
Esto junto con [Hs] y la afirmacién [A] implican que

Po{rp =t} <Po{rBobi—s = s} = Bo{Px(—s{tB = 5}} = /dPy{TB = s}p(t — s,z,y)dy = 0.
R

Probemos entonces [A]. Dado B C R? denotamos por #B la cardinalidad de B. Recuerde que B
es finito cuando #B < Ny, donde Xy = #N. Para cada n € NU {0}, sea A,, := B,+1(0) \ B,(0).
Nétese que

Z /AnPy{TB :s}dy:sup{/AnIP)y{TB € F}dy; F C (0,t), #F < No}

s€(0,t)
<my(4,) < co.

Luego, si P, := {s € (O,t);fAn Py{tp = s}dy > 0} se sigue de [17, Proposicién 0.20, p. 11] que
#P, < Rg. Sea P :={s € (0,1); [ga Py{7B = s} dy > 0}. Usando que

/ Py{tp =s}dy = Z/ Py{Tp = s} dy,
R? n=0 An

deducimos que P = U2, P,,. Finalmente, al ser (0,t) = PU Py #P < Xy, concluimos que P° # ()
y asi [A] es verdadera. O

Dado que el tiempo de salida 75 podria ser co, una pregunta interesante es ;Bajo qué condiciones
T es finito? La respuesta a esta cuestién viene dada en el Teorema 3.1 y para su demostracién
haremos uso de la semicontinuidad inferior de la funcién R? > z +— P, {rg < t}, t > 0. Esta tltima
afirmacion es el enunciado de nuestra siguiente proposicién y su demostracién se basa en las pruebas
dadas en [4, p. 81, Proposicién 1.10], [15, p. 22, Proposicién 1.19], [16, p. 163, Proposicién 1] y [24,
p. 20, Proposicién 2.1]. Sin embargo, cabe destacar que en tales demostraciones se utiliza que, para
cada § € (0,1), la funcién R? 3 &+ E,{Px s {78 < t — 6}} es continua, lo cual es consecuencia
del hecho de que la densidad de probabilidad de transicion del movimiento browniano es conocida.
Nosotros no hacemos uso de esto, ya que bajo nuestros supuestos, no tenemos férmula explicita de

p(t,z,y).
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Proposicién 3.2. Para cadat > 0 la funcion R? 5 z +— P {rp <t} es semicontinua inferiormente.

Demostracion. Para cada 6 > 0 sean f5(x) := E.{Px {8 < t—0}} y 78(0) := d+7p00bs. Observe
que 75(6) = inf{t > 6; X(t) ¢ B}, 7g(e) es decreciente y lims o 75(0) = 7. De la definicién de fs,
la propiedad [p1] y el lema de Fatou, tenemos

fste) = | Bylrs <t = 8)p(6.a.9)dy

z—r

:/ liminf Py {7p <t —6}p(d,2,y)dy
R4 v

Z—T

< lim inf / Py{rp <t—3d}p(d, 2,y)dy
Rd
= liminf f5(2).
zZ—T

Por lo tanto cada f5 es semicontinua inferiormente. Por [H3] obtenemos que fs(x) = P,{rp(d) <
t}, por lo que fo(z) es creciente para cada z € R?. Se sigue de esto y la Proposicién 3.1 que
lims o fs(x) = Pp{mp < t} = P,{rp < t}. De aqui, el resultado se sigue por la semicontinuidad
inferior de cada fs. O

El siguiente teorema presenta dos condiciones bajo las cuales 75 es finita, casi seguramente. La
demostracién se basa en la prueba del Teorema 1.17 en [15, p. 20] y la Proposicién 2.8 en [24, p.
23].

Teorema 3.1. Considere los siguientes enunciados.

1. my(B) < oo y existe [0,00) Dt — ¢(t) € [0,00) tal que ¢((0,00)) C (0,00), Umy_00 ¢(t) = 00
y p(t,z,y) < 1/¢(t) para toda t >0, x,y € R,

2. me(B°) > 0 y p(t,z,y) >0 para toda t >0, z,y € RY.

Si cualquiera de los enunciados anteriores se cumple, entonces se tiene que

sup Ex{7p} < oc.
zERY

Demostracion. Comenzamos suponiendo que 1. es cierto. Sea ty > 0 suficientemente grande de
manera que my(B) < ¢(to) v sea k 1= my(B)/¢(ty). Entonces x € (0,1) y € R? se tiene que

P.{7B > 2to} <P, {X(to) € B} = /Bp(to,x,y) dy < (Z>(1to)/3dy = K.

Luego, la propiedad [H3] implica que para toda n € N,
P.{rs > (n+ 1)2tp} = Ex{]P’X(thO){TB > 2tg}; TR > n2t0} < kP {mB > n2ty}.

Por induccién matematica concluimos que P,{7p > n2ty} < x", n € NU{0}. Por lo tanto, para
toda z € R?,

2to
1—k’

o
E.{r5} <2t0 Y Pu{rs >n2te} =
n=0

lo cual concluye nuestra demostracion en esta primera parte.
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Supongamos ahora que 2. se cumple. Por la Proposicién 3.1 tenemos que

P{rg <1} =P, {rp <1} > / p(1/2,2,y)dy >0, para toda z € R?. (11)
Sea f € C.(B) tal que 15 < f < 1. Para cada r > 0 definamos T, := inf{t > 0; fgf(X(u)) du > r}.
Puesto que f < 1, puede verse facilmente que T, > r. Nétese que sobre {7, < oo} se cumple lo
siguiente:

[T [y f(X(u)du=r.

[T : AT =t} ={ fy f(X(w) du<r}.
[Tg] s Ly =T, +T10 9T7.-

Es bien sabido que para cualquier proceso de Markov (espacialmente homogéneo) que satisface [Hi]-
[Hy], la filtracién (Fy;t > 0) es continua a la derecha (ver por ejemplo [16, p. 75]). La propiedad
[T5] y la continuidad a la derecha de la filtraciéon (Fy;¢ > 0) implican que 7T, es un tiempo de
paro. Afirmamos que para cada r > 0 se tiene que X(7,) € Supp(f) sobre {T, < oo}, donde
Supp(f) := {x € B; f(z) # 0}. En efecto, supongamos que para alguna r > 0 se cumple que
X(T;) ¢ Supp(f). Entonces existe w y una bola abierta B, (X (T;)(w)) tal que f se anula sobre ella.
Luego, debido a [H;]| podemos fijar v > 0 suficientemente pequena de manera que f (X (o, w)) =0
sobre [T, (w), T, (w) + ). Usando esto y las propiedades [T1], [T3] se llega a que

v (w) r(w)
r</OT +AYf(X(u,cu))du:/OT f(X(w,w))du=r,

lo cual es una contradiccién. Esto prueba nuestra afirmacién. Sea ¢ := inf,cs,pps) Pe{75 < 1}. De
la Proposicién 3.2 se sigue que existe zg € R? tal que § = P,,{7p < 1}. Més atin, (11) implica que
d > 0. Utilizando [H3], [T3], el hecho de que T, > r y que X(T;) € Supp(f) en el evento {T, < 75},
concluimos que

P AT 1 < 7B} = Ex{PX(TT){Tl <tphT, < TB} <(1-0)P AT, <78}, T7>0,2¢€ R,

Por induccién matemética se obtiene que P,{T,, < 753} < (1 —6)"!, n € N. Luego, puesto que
1(0,7’3/2] (t)lBC (X(t)) = 07 1B < f y [T2]7

IEI{%B} < ]EZ,{/TB F(X(@) dt} < ipx{/m F(X()dt > n} <1 +§:]P’x{Tn < 5},
0 — 0

n=1

Por lo tanto E.{rp} < 2(1 + 6~!) para toda z € R%. Esto tltimo concluye la prueba de este
teorema. O

El movimiento browniano y el proceso simétrico a-estable son ejemplos de procesos de Markov
cuyas respectivas funciones de densidad de probabilidad cumplen ambas condiciones del Teorema
3.1. En efecto, en el caso del movimiento browniano se conoce que

1 _le—yl?

a2t

por lo que ambas condiciones del Teorema 3.1 se cumplen. Para el proceso simétrico a-estable, ver
el Teorema 2.1 en [14, p. 208], incisos (1) y (5). Los procesos de Markov en los Ejemplos 2.2 y 2.3
satisfacen la segunda condicion del Teorema 3.1 sobre cualquier boreliano acotado B. En efecto,
para el Ejemplo 2.2 ver [3, Teorema 1.2, p. 2833] y para el Ejemplo 2.3 ver [13, Teorema 1.4, p.
557].

p(t,z,y) = z,y € RY >0,
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4. Propiedades de la densidad de transicién de Dirichlet

En esta seccién contruimos una densidad de transicién pp (¢, z, y) para el proceso matado asocia-
do a X y presentamos algunas de sus propiedades. Como veremos en la préoxima seccién, pp(t, z,y)
es el kernel de calor de Dirichlet y por esta razon es conocido también en la literatura como densidad
de transicién de Dirichlet. En esta seccién suponemos que D € B(R?).

Definamos r(t,2,y) := Eo{p(t — 7p, X (D), y);t > 7p}, t > 0, z,y e R y

po(t,z,y) = p(t,2,y) —r(t,x,y), t>0,z,y€R% (12)

Observe que si B € B(D), por el teorema de Tonelli, [H3] y la Proposicién 3.1, se tiene que

/Bpp(t, r,y) dy = P {X (1) € B} — Eo{Px(rp) {X(t —7p) € B}t > 7p)

=P, {X(t) € B} - P, {X(t) € B,t > 1p}
=P, {X(t) € B,t<7p}.

Por lo tanto, si definimos el proceso matado Xp = (Xp(t);¢ > 0) mediante

L X(t), t<7’D7
Xpt) = {Ta t > 7p,

donde 1 es un valor fijo, entonces hemos probado que pp(t,x,y) es una densidad de transicién para
el proceso matado Xp. Al punto fijo t se le denomina punto cementerio.

La densidad de transicién pp(t, z,y) hereda algunas propiedades de la densidad de probabilidad
p(t,x,y). Antes de mostrar dichas propiedades probaremos tres lemas. El primero (Lema 4.1) es
un resultado preliminar que nos ayudara a probar la continuidad de las trazas pp(t,z,e), t > 0,
x € Dy pp(t,e,y),t >0,y € D, sobre D. Como veremos en el Teorema 4.1, lo anterior tendrd
como consecuencia la continuidad de pp(t,e,e) sobre D x D, para cada t > 0.

Lema 4.1. Supongamos que D abierto y sea t > 0.
1. Para cada x € R?, r(t,x,e) es continua en D.

2. Sea h(s,x,y) = B {r(t —s,X(s),3)}, 0 < s < t, x,y € R%. Entonces, para cada s € (0,1),
y € D, h(s,e,y) es continua en RY. Mds aiin, si K C D es compacto, entonces

lim sup [pp(t. 2,y) — h(s,z,y) = 0, y € D.
sl0 zeK

Demostracién. Puesto que D es abierto, para cada y € D existe ¢, suficientemente pequeno de

manera que B, (y) € D. Definamos §, := d(DC, B, (y)) Luego, cada §, es positivo debido a que
D¢ es cerrado.

1. Sea (yy,) una sucesién en D que converge a y. De la Proposicién 2.1.3 se sigue que la sucesién
de variables aleatorias (p(t —1p, X(7D), yn) 1 {t>TD}) estd acotada por My, /o para n suficien-
temente grande. Debido a [ps], es claro que Ms, /o < oo. Por el teorema de la convergencia
dominada y [p1], tenemos que lim,,_,oo 7(t, x, yn) = 7(t, z,y) lo cual prueba nuestra afirmacién.
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2. Sea (z,,) una sucesién en R? que converge a = € R Usando que y € D, la Proposicién 2.1.3
y [p3], concluimos que

p(t — TD,X(TD),y)1{8>TD} < Ms;, < oo, para toda x € Rey t > s. (13)
2

Luego, de la definicién de r(¢,z,y),
]h(s,xn,y) - h(87377y)’ < / T(t - s,z,y)|p(3,xn,z) —p(s,x,z)] dz
Rd

<My [ Ip(s,,2) — plos . )]
R

2

Pero [pap(t,xn,2)dz = [pap(t,z,2)dz = 1y p(s,z,,y), p(s,2,y) son no negativas, para
toda n, por lo que el lema de Scheffé implica que el lado derecho de la 1ltima desigualdad
converge a cero cuando n — oo. Esto prueba la primera parte de 2.

Ahora, seant >0,y € Dy s € (0,t). De la propiedad [Hs] y (13) se sigue que

lpp(t,z,y) — h(s,z,y)| = ‘Ex{p(t — TD,X(TD),y);s > TD}
+EI{EX(S){p(t —s— TD,X(TD),y);t — s> TD};t >Tp > s}
—h(s,w,y)‘
§Ez{p(t—TD,X(TD),y);32TD}
—i—Ez{EX(S){p(t —5— TD,X(TD),y);t — 8> TD};S > TD}
<2M;,P{s > 1p}.
2

Sean K un subconjunto compacto de D y § := d(D¢ K) > 0. Claramente para toda z € K
se cumple que Bs(z) C D. Por lo tanto

sup |pp(t, x,y) — h(s,z,y)| < 2Ms, sup Po{rp,@) < s}.
xeK 2 zeK

El resultado ahora es consecuencia de [F].

La demostracién de Lema 4.1.2 se basa en la prueba del Teorema 2.4 en [21, p. 142].
El siguiente lema es crucial en la demostraciéon de que para cada t > 0, pp(t, e, ®) es simétrica

y su demostracién se fundamenta en las pruebas de los siguientes resultados: [15, p. 33, Teorema
2.4], [4, p. 122, Proposicién 4.1], [18, p. 153, Lema 4.1.3], [24, p. 36, Teorema 4.3].

Lema 4.2. Sean B,C € B(D) con D cerrado. Entonces

/]P’I{X(t)EB,thD}d:U:/IP’m{X(t)GC,tSTD}dx,
C B

para toda t > 0.

https://revistajobs.ujat.mx 41


https://revistajobs.ujat.mx

Ceballos-Lira et al. Journal of Basic Sciences vol. 11(32), p. 29-51 , septiembre—diciembre 2025

Demostracion. En la prueba de la Proposicion 2.1.4 se observd que el hecho de que D es cerrado
implica que {t < 7p} = NS {X (k) € D;jr = kt/2", k = 1,...,2" — 1}. Luego, al ser p(t,z,y)
una densidad de probabilidad de transicion se tiene que

/PI{X(t) € B,t <7pldx
C

= lim [ Py {X(j1) € D, X(j2) € D,..., X(j2n) € B} dxg

n—oo
271
= lim 10(.220) |:/ / PN / Hp(jk — jk—17 xk_l,:vk) d:L'Qn . d.l‘g d:Cl dx(]
n=oo Jp DJD B

k=1

2n
= lim //// 10(560)Hp(t/2”,xk_1,azk)13(x2n)da:Qn...dxgdxldxo
n—=oJpJpJD D Pt}

271,
= lim //// lB<$2n)Hp(t/Qn,xzn,k,mgn_(k,_l))lc(l'o)dm'()d.%'ldwg...dxgn.
n—JpJpJD D el

Usando el cambio de variables y; = xon_, k = 0,1,2,...,2" y la propiedad [p2] obtenemos que

/IP’I{X(t) € Byt < rp}da
C
277.
= lim / / / / (o) [ [ p(t/2", -1, yi) 1o (yan) dyan .. . dyz dyr dyo
n—JpJpJD D hel

2’rL
= lim [ 1p(yo) [/ / / 1T 20k = dr—1, vk—1, yx) dyan ... Ay dys | dyo
n—=ooJp DJD C iy

— lim [ P, {X(j1) € D,X(j2) € D,..., X (jon) € C}dyo

n—o0 B
:/ P,{X(t) € C,t < rp} duz.
B

Esto conluye nuestra prueba. O

El siguiente resultado serd sustancial en la prueba de la propiedad de Chapman-Kolmogorov.

Lema 4.3. Para cualesquiera s,t > 0, z € R y D C R%, la funcidn po(s,x,z)p(t,z,o)dz es
continua en RY.

Demostracion. Sean y € R y (y,,) una sucesién que converge a y. Definamos, para cada z € R? y
n €N, f(Z) = 1D(2)p(83 €T, z)p(t, 2, y)a fn(z) = 1D(2)p(83 €T, z)p(t, 2, yn)v g(z) = p(S, Ly Z)p(ta Zs y)7
gn(2) = p(s,z,2)p(t, z,yn). Notese que f < g, fn < gn para toda n y por la propiedad de
Chapman-Kolmogorov de p(t,z,y) se sigue que [pqg(2)dz = p(s +t,2,y) < 00y [pagn(z)dz =
p(s +t,x,y,) < oo para toda n. Pero de la propiedad [p1] obtenemos que lim, o0 fn(z) = f(2) v
lim,, oo fRd gn(z)dz = fRd g(z) dz. La afirmacion es ahora consecuencia del teorema de la conver-
gencia dominada generalizado (ver [28, p. 74, Lema 6.3]). O

Nuestro préximo teorema es el principal resultado de esta seccién y usamos la siguiente notacién:
dado un subconjunto abierto D de RY, 6p(z) = d(x, D°) para cada z € R% La demostracién esté
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basada en las pruebas de los siguientes resultados: [15, p. 33, Teorema 2.4], [24, p. 36, Teorema
4.3], [21, p. 141, Teorema 2.4]

Teorema 4.1. Sean D C R? un abierto y pp(t,z,y) dada por (12). La densidad de transicion
pp(t,z,y) tiene las siguientes propiedades:

1. pp(t,z,y) tiene la propiedad de Chapman-Kolmogorov.

2. Para toda t >0, pp(t,e,e) es continua en D x D.

3. pp(t,z,y) =pp(t,y,x), t >0, x,y € D.

Demostracion. 1. Del Lema 4.1.1 y [p1] se sigue que para cada t > 0 y z € R? la funcién
pp(t,z,e) es continua en D y asi pp(t,z,y) > 0 para todat > 0, » € R? y y € D debi-
do a que cada pp(t,z,e) es una densidad de transicién. Luego, 0 < pp(s,x, 2)pp(t, z,y) <
p(s,z, 2)p(t, z,y), s,t >0,z € R y, 2 € D. Usando esto, el Lema 4.3 y el teorema de la con-
vergencia dominada generalizado, puede probarse que [, pp(s,, z)pp(t, z,e)dz es continua
en D, para s,t > 0y z € R% El argumento es similar al de la prueba del Lema 4.3 por lo
que se omite. Por lo tanto, para probar la propiedad de Chapman-Kolmogorov, es suficiente
demostrar que para cada s,t >0y x,y € D se tiene que

pD(s+t,:c,o):/pD(s,:c,z)pD(t,z,o)dz, mye-c.d. (14)
D

En efecto, sean A € B(D) y s,t > 0. De la propiedad terminal (ver Proposicién 2.1.1) de mp
tenemos que {s +t < 7p} = {s < 7p,t < 7p o O5}. Luego, por la propiedad [Hs| se deduce
que
/pp(s+t,:c,y)dy =P {X(s+t)c A,s+t<7p}
A
= Ex{PX(S){X(t) € A,t < TD};S < TD}

= / P.{X(t) € At <7p}pp(s,z,z)dz
D

= / |:/ pD(sa Zz, Z)pD(tv Z>y) dz dy
Al/D
De la arbitrariedad de A € B(D), se sigue (14).

2. Comenzamos mostrando que pp(t, e, y) es continua en D para cadat >0y y € D. Sea (x,)
una sucesiéon en D que converge a x € D. Puesto que D es abierto, podemos elegir K C D
compacto tal que x,z, € K para toda n € N. Sea s € (0,¢). Por tanto, si h(s,z,y) es la
funcién del Lema 4.1.2, tenemos que

‘pD(taxnay) —pD(t,x,y)! S |pD(t,xn,y) - h(s,mn,y)\ =+ \pD(t,a:,y) - h(37x7y)’
+ |h(s¢$my) - h(57$7y)|

<2 SU‘E |pD(t7$7y) - h(S,CL’,y)| + |h(8,3§‘n,y) - h(s,x,y)|.
s

Luego, del Lema 4.1.2 se sigue que

limsup [pp(t, zn,y) — pp(t, 2, y)| < 2 sup lpp(t, 2, y) — h(s,z,y)|.
xre

n—oo
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Asi, la continuidad de pp(t, e, y) se sigue del Lema 4.1.2 haciendo s | 0. Ahora, debido a que,
como se demostrd en 1., pp(t,x,e) también es continua, entonces pp(t,e, e) es continua, ya
que por la propiedad de Chapman-Kolmogorov (parte 1. de este teorema),

pD(t,m,y):/DpD(t/2,:c,z)pD(t/z,z,y)dz.

3. Puesto que D es abierto, podemos escribir que D¢ = {z;dp(xz) = 0}. Definamos la sucesién
creciente de conjuntos D,, := {x;6p(z) > n~!} y consideremos las sucesiones de tiempos de
paro (7ps) v (7p,, ). Claramente (7pe) y (7p,,) son sucesiones crecientes tales que 7ps < 7p, <
Tp para toda n. Afirmamos que

lim D, = TD, P,-cs, x € D. (15)

n—oo
Para ver esto, es suficiente mostrar que limy, oo Tpe = 7p, Py-c.8, 2 € D. Sea T := limy, 00 Tpe -
Puesto que 7 < 7p, (15) es inmediato sobre el evento {7 = oo}. Debido a que 7 = sup,, 7ps,
de la Proposicién 2.1.8 se sigue que X(7pe) ¢ Dj, en el evento {T < oo}. Usando [Hy],
la continuidad de dp(e) y lo anterior, deducimos que dp (X (?)) = lim,,—yo0 0D (X (TD%)) <
lim, oo™ ! = 0, y asi X(7) ¢ D en el evento {T < oco}. Este hecho y la propiedad [Hy]
prueban que 7 > 0, P,-c.s, x € D y consecuentemente 7p < 7 en {7 < oo}. Esto tltimo
concluye la prueba de (15). Utilizando ahora (15), el teorema de la convergencia mondtona,
la Proposicién 3.1 y el Lema 4.2 obtenemos que, para cualesquiera B,C € B(D),

//pD(t,$,y)d$dy:/P${X(t)€B,t<TD}dﬂ?
BJC C

= lim [ P,{X(¢t) € B,t <7p,}dz

n—oo C

= lim [ P{X(¢) € B,t<7p,}dz

n—oo C

= lim [ P,{X(t)eC,t<mp, }dx

n—oo B

= lim | P,{X(t) e C,t<7p,}dy

n—oo B

= / P {X(t) e C,t <7p}tdy
B

:/ /pD(t,y,w) dady.
BJC

Por lo tanto pp(t, z,y) = pp(t,y, x), me@my-c.d.q. La continuidad de cada pp(t, e, e) implica
nuestro resultado.
O]

Puesto que 7p es un tiempo de paro y la filtracién es continua a la derecha (ver [16, p. 75]), la ley
cero-uno de Blumenthal nos dice que P,{7p = 0} € {0,1} para toda = € R%. Se dice que un punto
r € R? es regular para D¢ cuando P,{rp = 0} = 1. El conjunto de todos los puntos regulares a
D¢ es denotado por (D°)". Por tanto (D°)" = {z € R%;P,{rp = 0} = 1}. Puede demostrarse que
(D€)° C (D€)" C D¢ (ver [6, p. 62]). Se dice que el conjunto D es regular si 0D C (D€)". Asi, en
un conjunto regular, el proceso X abandona el conjunto D inmediatamente después del tiempo de
salida, siempre que inicie su movimiento en cualquier punto de la frontera.
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Suponga que D es un conjunto regular abierto. De la propiedad [Hy] se deduce que P,{X(0) €
A} = 14(z) para toda A € B(R?) y z € R?. Luego, si # € (D)", entonces

r(t, 2, y) = E{p(t, X(0),y)} = p(t,z,y), t>0,y€R%

Pero D¢ es cerrado, por lo que D¢ = (D€)°U 9D C (D))" U9D = (D)". La igualdad anterior y el
Teorema 4.1.8 implican que pp(t, z,y) se puede escribir de la siguiente manera:

p(t,ﬁ?,y)*T(t,IE,y), CL',yED,

t? ) = 3
po(t,,y) {0, x ¢ Do bieny ¢ D.

Los conjuntos regulares son importantes en teoria del potencial. Por ejemplo, se conoce que si
D es un dominio regular y f € Cy(D), entonces la funcién u(x) = Em{ f (X (TD)) }, x € D, resuelve
el problema de Dirichlet en el dominio D, es decir, u es arménica en D, continua en D y ulgp = f.
La solucién v puede interpretarse como el potencial electrostatico en D cuando el potencial en la
frontera esta dado por f ([19, p. 474]).

5. Una aplicacién a la teoria general de ecuaciones diferenciales
parciales

En esta seccién, presentamos una aplicacién analitica de la densidad de transicién de Dirichlet
y sus propiedades, a la teoria de ecuaciones diferenciales parciales .

Muchos procesos de reaccién-difusién se pueden modelar matematicamente mediante ecuaciones
parabdlicas. La importancia de dichos modelos radica en que presentan una relacién matematica
entre la tasa de variacién temporal y la tasa de variaciéon espacial de alguna magnitud fisica o
quimica dependiendo del fenémeno. Un ejemplo de tales modelos es el siguiente:

((;:;(t,x) = k(t)Au(t, z) + h(t)R(u(t,z)), t>0,z€ D,

u(0,2) = f(x), z€D,u|p=0,

(16)

donde D es un domino acotado de R, [0,00) 3 t +— k(t) € [0,00), [0,00) >t~ h(t) € [0,00) son
continuas, [0,00) 3 u — R(u) € [0,00) es localmente Lipchitz, A es un operador de difusién y la
condicién inicial f € Dom(.A) es no negativa.

Por ejemplo, cuando k(t) = k > 0, A = A|p y h = 0, el problema anterior se tranforma
en el problema lineal cldsico del calor con condicién de frontera. Un modelo no lineal y quizas
poco conocido entre lectores mateméticos, es el modelo de Frank-Kamenetzky (adimensional), es
decir, cuando k(t) = 1, A = Alp, h(t) =0 > 0, R(u) = e y f = 0. La constante adimensional
(lamada constante de Frank-Kamenetzky) es importante porque depende de muchos pardmetros,
por ejemplo, la densidad del material y su difusividad térmica. El modelo de Frank-Kamenetzky
describe como evoluciona con el tiempo la temperatura de un material combustible, que fue sometido
a un proceso de ignicién inicial y cuya temperatura externa es constante. Para més detalles ver [5]
y las referencias alli dadas. Sin embargo, este operador de difusién podria ser mas general como
hemos visto en los Ejemplos 2.1, 2.2 y 2.3.

De la teoria de semigrupos se conoce que la solucién u del problema de Cauchy (16), puede ser
expresada en términos del sistema de evolucién asociado al generador no auténomo k(t).A. Veremos
a continuacién como la densidad de transicién de Dirichlet pp (¢, z, y) permite construir este sistema
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de evolucién. Por esta razén, en la literatura de ecuaciones diferenciales parciales, se conoce a la
densidad de transicién de Dirichlet pp (¢, x,y) como kernel de calor de Dirichlet.

En lo que sigue suponemos que D es abierto, Dom(A) C L%(D) y denotamos por (f,g) a la
integral [, f(z)g(z) dz. Recuerde que L?(D) es un espacio de Hilbert respecto al producto interno

(o,0).

Para cada f € L*>°(D), definamos
Spf(e) = [ fwpn(t..9)dy. t>0.0€D
D

y sea Sp(0)f(z) := f(z), z € D. La familia de operadores (Sp(t);¢ > 0) forma un semigrupo
fuertemente continuo en L?(D). Sin embargo, para demostrar esto, acorde con el Lema 1.4.3 en [18,
p. 30], necesitamos el siguiente resultado preliminar.

Lema 5.1. Para cada f € C.(D) se tiene que limy o Sp(t)f(xz) = f(x), z € D.

Demostracion. Es bien conocido que toda funcién en C.(D) es uniformemente continua, por lo que,
si wy(d) = sup{|f(z) — f(y)];|r —y| <}, entonces limsgwy(d) = 0. Sean 6 > 0y x € D. Nétese
que

1Sp(6)/(2) — F(@)] = |Sp()f (@) — F@)Palt < 70} + F(2)Bal{t < 70} — [(2)]
/ F@) — F@)lpp(t.2.9) dy + | FlocPa{rp < 1}

< wp(0) + 2HfHooEx{1(—5,6)C(X(t) — X(0)); X(0) = a}
+ [|fllocPe{7D <1},

donde hemos usado [Hy] en la ultima desigualdad. Debido a la propiedad [H;] y a la Proposicién
2.1.2 se sigue que

ltmsup [Sp(6)f(2) — f(x)] < wy(6).
tl0

Haciendo § | 0 se obtiene la prueba de este lema. O

Teorema 5.1. La familia de operadores (SD(t);t > O) forma un semigrupo auto-adjunto de con-
tracciones fuertemente continuo en L2(D).

Demostracion. Veamos primero que (SD (t);t > 0) tiene la propiedad de semigrupo. En efecto, sean
f €L3D)y s,t>0. Usando la propiedad de Chapman-Kolmogorov (ver Teorema 4.1.1)

Sp(s+1)f /f [/ppswz)pD(tzu)dz]du

:/ [/ f(u)(t,z,u)du]pp(s,:ﬁ,z)dz

/ Sp(t)f(z)pp(s,x,z)dz
= Sp(s)Sp(t) f(z),
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lo cual muestra nuestra afirmacién. Probamos ahora que cada Sp(t) es auto-adjunto. Sean f, g €
L%(D) y t > 0. Entonces aplicando el Teorema 4.1.3, se sigue que

sor.a) = [ [ [ e an]oe i
Z/Df(y) UDg(w)pD(t,y,x)dfc} dy

= (f,Sp(t)g).

A continuacién mostramos que cada Sp(t) es un operador de contraccién en L?(D). Hemos visto
que cada pp(t,x,e) es una densidad de transiciéon. Aplicando la desigualdad de Cauchy-Schwarz
con respecto a la medida pp (¢, x,y) dy, el hecho de que cada Sp(t) es un operador auto-adjunto,
la propiedad de semigrupo y que pp(t,z,y) < p(t,z,y) obtenemos que

1Sp(8) fll2 < v/ (Sp(t)1 SD( )12
=V(Sp®)Sp(t)L,|f?)
<SD(2t)1v‘f| )
<[ fll2

como se afirmaba. Finalmente mostramos que (Sp(t);¢ > 0) es fuertemente continuo en L?(D). Lo
anterior es consecuencia inmediata de [18, p. 30, Lema 1.4.3] y el hecho de que C.(D) es denso en
L2(D). Sin embargo, presentaremos con detalle la prueba de esta afirmacién. En efecto, puesto que
cada Sp(t) es una contraccién en L2(D), se tiene que

1Sp(t)f — fII3 < 21 £I5 = 2(Sp(®)f. f), f€L*D).

Se sigue de esto, el Lema 5.1 y el teorema de la convergencia dominada que

li |Sp(6)f ~ f2 =0, f € C(D). (17)

Sea f € L2(D). Debido a la densidad de C..(D) en L?(D), para cada ¢ > 0 podemos fijar f. € C.(D)
tal que || f — f-||2 < £/2. Usando nuevamente que cada Sp(t) es una contraccién en L2(D) se deduce
que ||Sp(t)f — flla < e+ |Sp(t)fe — fell2- Luego, de (17) concluimos que

ltmsup [Sp(t)f - fll2 < e.
t10

La arbitrariedad de £ > 0 muestra el resultado y consecuentemente finaliza la demostracién. O

Veamos ahora como el semigrupo permite obtener una expresién de la solucién u de (16).
Para esta parte es suficiente tener presente las propiedades béasicas de semlgrupos de operado-
res y sus generadores (ver por ejemplo [25, Capitulo 1]). Sean K(t,s) := f k(r)dr, t,s > 0y
U(t,s)f:=S(K(t,s))f, f € L®(D). Del Teorema 5.1, es inmediato que (Up(¢, 3) t > 5>0) esun
sistema de evolucién (ver [25, Definicién 5.3, p. 129]) de contracciones en L2(D). Es fécil ver que si
v € Dom(A), donde A es el generador inifinitesimal (Sp(t);¢ > 0), entonces

%UD(t, s)v(t,x) = k(t)AUp(t, s)v(t, z)

;SUD(t $)o(s,x) = —Up(t, s)k(s) Av(s, ). (18)
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Sea u una solucién (clésica) de (16) y sea v(t,z) := Up(t, s)u(s,x), s € [0,t], x € D. Luego,

u(t,x) = Up(t,0)f(x) + v(t, z) — v(0,z)

=Up(t,0)f / s (s,z)ds
— Up(t,0)f(x) + /0 [ Un(t, $)k(s) Au(s, ) + Un(t,5) o (s, )] ds.

donde hemos usado (18) en la tltima igualdad. Puesto que u satisface (16) concluimos de lo anterior
que u satisface la ecuacion integral

u(t,z) = Up(t,0)f(x) + /Ot h(s)Up(t,s)R(u(s,z))ds, ¢>0,z€ D. (19)

Cualquier solucién de la ecuacion integral (19) se le llama solucién mild de (16). Nétese que si
pp(s,z,t,y) :=pp (K(t, s),az,y), t>s>0,z,y € R? entonces (19) queda expresada de la siguiente
manera:

u(t, x) /f stxtydy—i—// sy))pD(sa:ty)dyds t>0,xz€D.

Por tanto conocer propiedades y estimaciones del kernel de calor de Dirichlet pp(t,x,y), permite
entender el comportamiento de la solucién mild.

La importancia de la soluciéon mild radica en que ha permitido obtener descripciones cualitita-
tivas del comportamiento asintético de la solucién u del modelo (16). Por ejemplo, se conoce que
la solucién u del problema (16) podria manifestar el fenémeno de explosién en tiempo finito,
el cual se presenta cuando el valor de la solucién diverge a infinito tras un cierto intervalo de
existencia. Especificamente, se dice que u explota en un tiempo finito ¢, > 0 si

i fu(t. ) o = 0.
En caso contrario se dice que u no explota en tiempo finito o que esta globalmente definida.
Determinar bajo que condiciones ocurre este fenémeno se llama estudio de la explosiéon. Como
hemos visto, toda solucién (clasica) de (16), es una solucién mild. Luego, realizar un estudio de
la explosion de la solucién mild implica determinar bajo que condiciones ocurre o no ocurre la
explosion en tiempo finito de la solucién de (16). Esta idea ha sido explotada desde hace anos por
diferentes autores como puede ser consultado en [8, 9, 10, 22, 23| y las referencias dadas en dichos
trabajos.

6. Conclusiones

En este trabajo se han presentado demostraciones de propiedades elementales del kernel de calor
de Dirichlet para una clase bastante general de procesos de Markov simétricos. Como fue expuesto
en los ejemplos, esta clase incluye procesos cuyos generadores asociados surgen en varios modelos
matematicos. El estudio del comportamiento asintético de soluciones de modelos con condiciones
de frontera de Dirichlet de la forma (16), depende del conocimiento de las propiedades del kernel
de calor de Dirichlet, el cual posee una forma general no trivial (véase (12)).

En la actualidad no existen muchas fuentes bibliograficas que presenten demostraciones detalla-
das de las propiedades basicas del kernel de calor de Dirichlet para procesos de Markov simétricos
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discontinuos y las que existen se basan en estimaciones del kernel de calor del proceso de Markov
simétrico dado. De aqui, la importancia de la difusién de tales pruebas, ya que también demues-
tran la trascendecia de las técnicas probabilistas en el estudio de un objeto matemético con tal
generalidad.
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Resumen

Este trabajo ofrece una reconstruccion detallada y conceptualmente clara de la deduccion de
Feynman de las ecuaciones de Maxwell, basada en la segunda ley de Newton y en el uso de corchetes
de Poisson entre coordenadas y velocidades en un espacio euclideo. Aunque motivado pedagdgi-
camente, nuestro enfoque es rigurosamente técnico y clarifica los supuestos fundamentales que
subyacen tanto en la deduccién original como en su extension relativista. Comenzamos revisando
la ley de la fuerza de Lorentz en un marco euclideo clasico, para luego reformularla de manera
covariante utilizando el cdlculo tensorial en el espacio de Minkowski, incorporando la prescripcién
de acoplamiento minimo tal como fue establecida formalmente por Montesinos y Perez-Lorenzana.
Su contribucién permite reconciliar la prueba de Feynman con una aplicaciéon general y sistemaética
del principio de acoplamiento minimo.

Palabras claves: Ecuaciones de Maxwell, Corchetes de Poisson, Prueba de Feyman-Dayson, Aco-
plamiento minimo.

Abstract

This work offers a detailed and conceptually transparent reconstruction of Feynman’s deriva-
tion of Maxwell’s equations, based on Newton’s second law and the use of Poisson brackets bet-
ween coordinates and velocities in Euclidean space. While pedagogically motivated, our approach
is technically rigorous and clarifies the foundational assumptions underlying both the original and
relativistic versions of the derivation. We begin by revisiting the Lorentz force law in a classi-
cal Euclidean framework and then reformulate it covariantly using Minkowskian tensor calculus,
incorporating the minimal coupling prescription as formally established by Montesinos and Perez-
Lorenzana. Their contribution highlights how Feynman’s proof can be reconciled with a general
and systematic application of the minimal coupling principle.

Keywords:Mazwell’s equations, Poisson brackets, Feynman-Dyson proof, Minimal coupling.
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1. Introduccion

La demostracién de las ecuaciones de Maxwell a partir de principios mecénico-cuanticos, origi-
nalmente atribuida a Richard Feynman y difundida por Freeman J. Dyson en 1989 [1], representa
un enfoque novedoso para conectar la dindmica de particulas con la teoria electromagnética clési-
ca. En su trabajo, Dyson mostré que, partiendo de la segunda ley de Newton y las relaciones de
conmutacién canonica, era posible derivar las ecuaciones fundamentales que gobiernan los cam-
pos eléctricos y magnéticos, asi como la fuerza de Lorentz que actia sobre particulas cargadas.
Este planteamiento abrié un nuevo camino para entender la teoria electromagnética desde una
perspectiva basada en principios mecanicos subyacentes.

El impacto de esta demostracién generé multiples discusiones criticas y extensiones en la li-
teratura cientifica. Por un lado, autores como Farquhar [3], Dombey [7] y Moreira [8] sefialaron
limitaciones conceptuales y técnicas, particularmente en cuanto a la justificacién de ciertos su-
puestos implicitos, como la estructura espacio-temporal y la dependencia de postulados especificos
de la mecdanica cuantica. Estas criticas fomentaron un andlisis més riguroso y una busqueda de
condiciones en las que el argumento fuese valido.

Paralelamente, otros investigadores profundizaron en la generalizacién y formalizacién del méto-
do. Tanimura [4] realizé una extensién relativista y adapté el esquema a teorias de gauge no abe-
lianas, utilizando herramientas avanzadas del formalismo de operadores y la teoria cudntica de
campos. Land, Shnerb y Horwitz [5] exploraron la conexién del enfoque de Feynman con los funda-
mentos de la teoria de gauge, destacando la importancia de las estructuras algebraicas y geométricas
involucradas. Més recientemente, Montesinos y Pérez-Lorenzana [6] reformularon la demostracion
desde el principio de acoplamiento minimo, clarificando el papel de la simetria gauge y la covarianza
en la deduccién de las ecuaciones de Maxwell.

Adicionalmente, investigaciones como la de Vaidya y Farina [2] cuestionaron la coexistencia
coherente de las ecuaciones de Maxwell con la mecénica galileana, poniendo en evidencia la nece-
sidad de la relatividad especial para un marco conceptual consistente. En un plano maéas formal,
Bracken [9] estudié la estructura de corchetes de Poisson asociada al problema de Feynman, evi-
denciando vinculos profundos entre la formulacion clasica y la cuédntica, asi como la geometria
simpléctica subyacente.

En conjunto, estos trabajos han consolidado y enriquecido la comprension del enfoque de
Feynman-Dyson, situdndolo como un puente conceptual importante entre la mecéanica, la teoria
de gauge y el electromagnetismo clasico, ademas de ofrecer nuevas perspectivas para su generaliza-
cién a contextos relativistas y no abelianos.

Este trabajo presenta una reconstruccion sistematica y conceptualmente rigurosa de la deduc-
cién de las ecuaciones de Maxwell basada en principios mecdnicos y geométricos, originalmente
propuesta por Feynman. Aunque el enfoque tiene un espiritu pedagogico, se desarrolla con detalle
técnico y busca clarificar los supuestos fundamentales que subyacen en el argumento original de
Feynman y en sus extensiones relativistas y geométricas. Se revisa primero la deduccion de la fuer-
za de Lorentz a partir de los corchetes de Poisson en un espacio euclideo, y luego se reformula de
manera covariante utilizando un formalismo tensorial compatible con la geometria de Minkowski.

Este articulo se organiza de la siguiente manera: en la Seccién 2 se revisa el procedimiento de
Feynman-Dyson para deducir la forma de la fuerza de Lorentz y de las ecuaciones homogéneas.
En la Seccién 3 se presenta la extension relativista de este enfoque en el espacio-tiempo plano de
Minkowski, enfatizando el papel del tensor electromagnético y de los corchetes covariantes. En la
seccién 4 se introducen las ecuaciones inhomogéneas de Maxwell prestando especial atencién al
concepto del acoplamiento minimo. Mientras que finalmente, en la seccién 5 se presentan algunas
observaciones y posibles direcciones futuras de investigacién.
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2. Deducciéon de Feynman-Dyson de las ecuaciones de Maxwell.

El procedimiento propuesto por Feynman y presentado por Dyson [1] parte de una hipétesis
central: asumir que existen corchetes de Poisson bien definidos entre las posiciones x; y las velo-
cidades z; de una particula en un espacio euclideo tridimensional, con las siguientes propiedades
fundamentales

[mivxj] =0, (1)

m[xi, .’i‘j] = zhéw (2)

donde m es la masa de la particula y d;; es la delta de Kronecker, que vale 1 sii = j y 0si7 # j.
Estas relaciones son analogas a las relaciones de conmutacion candnicas en mecénica cuantica, con
la diferencia de que se plantean en un marco clasico mediante corchetes de Poisson.

A partir de la segunda ley de Newton

ma:z = Fi(IL‘,j},t). (3)

y combinando esta relacién con otras propiedades de los corchetes (ver apéndice), asi como
utilizando las reglas introducidas anteriormente (1)-(2), podemos deducir las siguientes expresiones

[, f(z5)] = 0, (4)
lo que indica que la posiciéon conmuta con cualquier funcién de posicién, y también
th Of
. 2\ = 5
fos £(2)) = 2252 5)

que nos muestra como la posicion se relaciona con funciones de velocidad, y

_ihof

[, ()] = (6)

que indica la relacién inversa para la velocidad con funciones de posicién. Estas expresiones
seran muy importantes para los cdlculos que haremos.

2.1. Fuerza de Lorentz.

A partir de la segunda ley de Newton (3), queremos deducir la forma de F;. Para ello, diferen-
ciamos en el tiempo el corchete de la ecuacién (2)

d . o . d .
mﬁ[xl, &j] = mL;, 5] + m [z, &5] = ﬁ(zh&j) = 0. (7)

Recordando que, la fuerza estd dada por (3), sustituimos esta expresién en (7), obteniendo

m[ii,ij] = —[xz,Fj] (8)

Interpretacion: la no conmutatividad entre las velocidades introduce un término proporcional a
[z, F}], el cual, debido a la propiedad de antisimetria del corchete de Poisson, satisface la relacién

[zi, Fj] = —[zj, Fil. (9)
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Esto indica que dicho término posee una estructura antisimétrica en los indices espaciales. Para
capturar esta caracteristica de manera explicita, resulta natural introducir un nuevo campo anti-
simétrico, el cual puede, en principio, depender tanto de las coordenadas como de las velocidades.
Para capturar de manera general esta estructura, introducimos un nuevo campo antisimétrico M;;,
y suponemos que existe una constante de proporcionalidad a tal que

[.%‘, FJ] = aMZ-j. (10)

Donde sea M;; una matriz antisimétrica de 3 x 3

0 M2 M3
Mij = | Moy 0 Mog (11)
M3z Mszs 0.

La constante a se introduce como un factor dimensional que permite mantener general la rela-
ci6én entre el conmutador (10) y (11), facilitando su identificacién posterior con cantidades fisicas
conocidas. Este enfoque también permite que a absorba posibles factores constantes que surjan en
el célculo, y serd determinado més adelante al comparar expresiones explicitas para el conmutador.

Definimos ahora un vector Hy, tal que

0 €123H3  €132H> 0 Hs —H»
M;; = | ea13H3 0 e Hy | = —-Hs 0 H, (12)
€312Hy €391 Hy 0 H, —-H; 0
Esto nos permite escribir:
Mij = Eiijk- (13)

Por lo tanto, se puede expresar
[xi, Fj] = aeiijk. (14)

Utilizando los resultados anteriores, en particular la ecuacién (5), podemos reescribir la ecuacién
(14) como

1h OF;
i, Fj] = Eaij:]- = aeij Hy, (15)
de donde se obtiene
dF; m
8j:]~ = acije . (16)
Cambiando el indice j por 7 en (16) y multiplicando por di;
o di; = %aflikﬂkdl’lv (17)
dF; = %aeukadi‘l, (18)
renombrando el indice (I — j) en (18)
dF; = %aeﬁkf]kdij. (19)

Integrando esta relacién con respecto a ;
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m .
F;, = %aejikaxj + Ci(x,t), (20)
y ajustando la constante a = —%. Este valor de a no solo ajusta la dimensién correcta de la

relacion, sino que también garantiza que la fuerza F; adopte la forma esperada

Fi = —GjikaiJ‘ + CZ (21)

La determinaciéon de la constante a queda plenamente justificada, tanto dimensional como con-
ceptualmente, habilitando la identificacién de los campos fisicos E;(z,t) y H;(x,t). Al identificar
Ci(x,t) = Ei(x,t), la fuerza adquiere la forma

F,=F;, + Eijki'ij' (22)

que coincide con la ley de Lorentz. De esta manera, queda establecido que E; v H; on los campos

que rigen la dindmica de una carga sometida a interacciones electromagnéticas segtn las relaciones
de conmutacién.

2.2. Divergencia del campo magnético.

Continuando con las deducciones, ahora abordamos la inexistencia del monopolo magnético.
Para ello, retomemos la ecuacién (15)

ih
[ZL‘“E] = _%eiijk:' (23)

Esta expresion es fundamental y constituira el punto de partida para los desarrollos posteriores.
Si ahora calculamos el conmutador de (23) con zy, se obtiene

ih
2k, [23, Fy]] = ——eijilzx, Hil. (24)
Aplicando la identidad de Jacobi!, tenemos

(i, (&5, 2k]] + [&5, [Zk, 2i]) + [Er, [23, 5] = 0. (25)

Observando el tercer término en (25), notamos su similitud con la ecuacién (2). Aplicando el
conmutador con & al lado izquierdo de (2), se obtiene

[.fk, [(L‘i, 1'JH = [i‘k, %zhdu] =0. (26)

De manera andloga, el segundo término de la identidad de Jacobi resulta ser 0. Esto deja
Unicamente el primer término
[zi, [&, &x]] = 0, (27)

resultado que sera fundamental para las interpretaciones fisicas posteriores.
Recordando la ecuacién (8), podemos conmutarla con zj para obtener

[, [x; Fi] = —mlw, (&5, &x]] = 0. (28)

Este resultado puede sustituirse directamente en la ecuacién (24), lo que nos lleva a

YA, [B,C] + [B,[C, A]] + [C, A, B]] = 0.
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ih
(i, [, Fil] = ——ejulzi, Hi] = 0. (29)
De aqui se deduce que
[x;, H] = 0. (30)

Lo que significa que H es una funcién solo de x y t.
Otro resultado 1til para nuestra demostracién se obtiene al sustituir la forma propuesta para
la fuerza de Lorentz en la ecuacién (23)

. ih
[:L’i, Ej + GjlkZL‘lHk] = _Eeiijk‘ (31)

Aplicando la propiedad de linealidad del conmutador (ver apéndice), la ecuacién anterior se
reescribe como

) ih
[wi, Ej] + [mi, fjlklek] = _EEiijk. (32)
Analizando el segundo término del lado izquierdo en (32), aplicamos nuevamente la linealidad
€jikri, TiHy) = €k ([, @1 Hy + [z, Hi)dy) - (33)

De acuerdo con (30), sabemos que [x;, H;] = 0, por lo que el segundo término en (33) desaparece,
con lo que queda
€jik(Ti, T Hy) = €jip[xs, 4] Hy. (34)

Sustituyendo ahora (2) en la expresién anterior, se obtiene
. ih ih
€itkTi, T HE] = €1 <m5il> Hy = EjikEHk- (35)
Sustituyendo en (32) los resultado de 35, obtenemos

ih ih

[l‘i, Ej] + ejikEHk = —Eeijkﬂk. (36)
obtenemos
Sustituyendo este resultado en (31), obtenemos
[I‘Z‘, Ej] = 0, (37)

lo que indica que el campo eléctrico E también depende tinicamente de x y t.
Regresando a la ecuacién (23), la reescribimos como
L ih
m[xi,a?j] = EEiijk. (38)

multiplicando (38) en ambos lados por €;;;, se obtiene

m? il s
eijkeilek = T,he [QZZ',SU]'], (39)
2
m ..
200Hy = T €iji[Ti, 4], (40)
2
m ..
H = —Qiheijl[:vi,mj] (41)
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Si ahora conmutamos (41) con &y,

[, Hy] = —gﬂiﬁijk[mkv [, 5] (42)
Nuevamente, aplicando la identidad de Jacobi
[zk, [&i, 2] = 0, (43)
lo que finalmente implica
[T, Hg] = 0. (44)

Segin la expresién (6), este conmutador se interpreta como
V-H=0, (45)

es decir, la ecuacién de Maxwell para la divergencia del campo magnético, lo cual completa
la demostracion de la inexistencia del monopolo magnético.

2.3. Ley de Faraday.

Para facilitar el desarrollo de los cdlculos, partimos directamente de la ecuacién (41). Si deriva-
mos esta expresién con respecto al tiempo, obtenemos

d im? d
dt k 2h 62]k dt [1:17 x]] ( 6)
Sabemos que, por definicién, el lado izquierdo de la ecuacién se puede expresar como
d 0H;, . 0H,
—Hp,=— —. 47
S T . (47)

Ahora nos enfocamos en el lado derecho de la ecuacién (46). Utilizando la relacién entre la
aceleracién y la fuerza, se tiene:
im? d im

_Theijk%[iivij] = —;ez-jkm,m (48)

Sustituyendo la expresion de la fuerza de Lorentz (22), se obtiene:
m .. m . .
_?Gijk[ﬂa .ij] = _Feijk[Ei + Eimnmena Z'j]. (49)

Analizando tnicamente el lado derecho de la ecuacién anterior, y aplicando las propiedades del
conmutador, se llega a
_?fijk[Ei + €imnEmHy, ] = —?Gijk[Eiaﬂﬁj] - %EijkEimn[memwj]- (50)
Aplicando la regla de Leibniz II (indicada en el apéndice como ecuacién 112), y simplificando
los términos, podemos escribir:
m 0F

—?Gijk[Ei + €imnEmHy, Tj] = —€iji

b, O . OH;
a’L'j J 8a:j k@a:j ’

Sustituyendo las expresiones de los lados izquierdo y derecho en la ecuacién (46), se obtiene:

(51)
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OHj, i OH}, OFEy L OH}, . 0H;
7k k.. . _ )
ot ma:lim ik aﬂ}j J 8a;j k aTj
De acuerdo con las propiedades deducidas en secciones anteriores, sabemos que el tercer término
del lado derecho se cancela debido a imponer la ecuacién (45). Ademés, los segundos términos de

ambos lados de la ecuacién (52) se anulan. Por lo tanto, queda la siguiente igualdad

(52)

OHj, OF},
—_— = — €. 53
8t el]k 8xj ( )
Esta expresién es equivalente a:
oH S
— +VXE=0 54
5 TV X : (54)

que corresponde a la Ley de Faraday, como se queria demostrar.

3. Formulacién relativista especial.

Tomando en cuenta que previamente hemos deducido las dos ecuaciones homogéneas de Maxwell
utilizando de manera explicita la version galileana de la ley de Lorentz en combinacién con una
estructura cudntica basada en los corchetes de Poisson, es decir, una formulacién que entrelaza
las descripciones clasica y cudntica como en la prueba de Feynman [2], [3], surge ahora una nueva
consideracion. Al trabajar en un espacio plano de naturaleza cldsica, una de las debilidades de dicha
derivacién es la ausencia de covarianza de Lorentz de forma manifiesta. Por este motivo, resulta
natural proponer una version relativista especial del mismo razonamiento [4], [5].

Consideremos entonces una particula relativista de masa en reposo m en un marco inercial,
sometida a una fuerza externa tal que su momento generalizado satisface la regla de acoplamiento
minimo. Siguiendo el desarrollo detallado presentado en [6], partimos de una particula que se mueve
en un espacio-tiempo de Minkowski, cuyas coordenadas describimos como

t(r), p=0,1,...,d—1, (55)

donde 7 es un parametro.
El momento candnico incorpora la contribucién del campo electromagnético a través del potencial
A, lo que nos permite escribir

T =ma, + Ay(z, ). (56)

Establecemos ahora la notacion para las derivadas respecto al tiempo propio 7 y las coordenadas
canonicas de una funcién f(z, ) en el espacio de fases

. df u_ 0 Ay 0
Cdr’ o= dx,’ o= om, (57)
El corchete de Poisson en su formulacién relativista toma la forma
— af ag 89 af _ 0 £H0 0 0
(0) = (gl S50 ) = (@079~ 02000 ). (59)

Gracias a la presencia explicita de la métrica de Minkowski 7,,, este corchete es covariante bajo
transformaciones de Lorentz, propiedad fundamental que lo distingue del caso galileano.
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Con todo lo anterior establecido, procedamos a calcular el corchete {x,, 2, }. Para ello, partimos

del despeje de la velocidad a partir de la expresién del momento canénico
. 1
Ty, = E(ﬂ',, — A, (x,m)). (59)

Al aplicar el corchete con x,, se obtiene

) 1
(et} = — ({2, T} — {2, Av(z, m)}). (60)
Utilizando la definicion del corchete relativista antes introducida, llegamos a la expresion
0A,
b)) = - = 61
m{x,, &} = Nuw o, (61)

Este resultado es andlogo al caso no relativista (2), pero revela cémo la estructura métrica de
Minkowski y la dependencia del potencial en el momento modifican la dindmica.

3.1. Fuerza de Lorentz Relativista.

Una observacién crucial es que de la expresién (55) podemos empezar a esbozar la presencia de
una fuerza. Derivando esta expresion con respecto al pardmetro afin 7, se obtiene

d
= (- ). (62)
Para avanzar en la derivacién, diferenciamos la ecuacién (61) respecto a
d d 0A,
— by} = — (N — ——). 63
de{xu,l‘ } d,]_(n# 877“) ( )
donde aplicamos la regla de Leibniz al corchete de Poisson
. . d 0A,
mi{dy, &y} +mizy,, &} = E(ﬁwu )- (64)
Reorganizando términos
. . d 0A,
ik = —mli i)+ (G (65)

Este resultado vincula la variacion de la aceleracién con los corchetes de velocidad y la evolucién
del potencial. A continuacién, evaluamos el corchete {z#, 1"} utilizando la expresién (59)

{a", i} = # ({m#, 7"} = {A", 7"} — {x¥, A"} + {AF, A7) (66)

Dado que {7#, 7} = 0 por ser candénicamente conjugadas a x*, esta contribucién se anula. Por
tanto

{zH, 2"} = (—{A*, n"} — {n", A"} + {A*, A"}). (67)

1
m2

Evaluamos ahora cada término por separado mediante la definicion del corchete de Poisson

B OV v HAM
0A* O onY A >’ (68)

Bty ppo _
A% = <8xp ore  QxP On°
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lo que simplifica a

oA
AR gy =
far 1} = 2, (69)
y, por antisimetria,
0A”
BoAVY — _
{mH, A"} = EeTh (70)
El dltimo término se calcula como
OA* DAY
B AVY — PO _
() = (G200 o). (1)
Sustituyendo estos resultados en (66), obtenemos
1
(@37} = — (A7 = 0 A" 4 (A, A7), (72
donde es natural reconocer la estructura del tensor de campo gauge
Fu =0,A, —0,A, +{A,, A} (73)
Sustituyendo esta expresion en (65), resulta
1 d (0A,
“V = 7F v - . 4
m{@y, &y} moe +d7’ (aﬂu> (74)
Multiplicando ambos lados por m y contrayendo con %", se obtiene
. o, d (0A)N .,
m2{x,, i, " = F,a" + e (87Tu> . (75)
Lo cual nos permite identificar
. L d (0A)N .,
mi,, = F,i" + p (87@) zv. (76)
A partir de la ecuacién (59), reconocemos
d (0A
o= prgy o L (92 (77)
dr \ Om,
Definimos entonces el término adicional como
d (0A
14 - v %%
6w) = 4 (G ) 4 (78)
lo que nos permite expresar la fuerza total como
F#t = F!, 32" + G*(x), (79)

una generalizacion relativista de la fuerza de Lorentz, donde los dos términos satisfacen las
siguientes condiciones de consistencia

8,G, — 8,G,, = 0, (80)
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OuFyp + 0, Fp, + 0,F,, =0, (81)

lo que implica la existencia de un campo escalar ¢(x) y un campo vectorial A,(x) tales que

G, = 0,9, (82)

Fuy = 0,4, — 0,A,. (83)

Los resultados obtenidos en esta seccién revelan de forma explicita como se manifiesta una fuerza
tipo Lorentz en el contexto relativista, partiendo de la estructura del formalismo hamiltoniano con
variables extendidas. En particular, la derivacién del tensor de campo F),,,, que incorpora tanto los
derivados del potencial como los corchetes de Poisson entre componentes del mismo, muestra la
generalizacién natural de la fuerza electromagnética en este marco tedrico.

La ecuacién de movimiento (79), identifica dos contribuciones a la fuerza: una directamente
asociada al tensor de campo F),, y otra representada por G*(z), un término derivado del potencial
que puede interpretarse como un gradiente de un campo escalar. Esta forma generalizada de la
fuerza de Lorentz permite una descripcién unificada de interacciones gauge y campos adicionales
en contextos mas amplios, como los que aparecen en teorias efectivas o formulaciones no candnicas.

Finalmente, la imposicién de condiciones sobre los tensores F),, y G, dadas por las ecuaciones
(80) y (81), garantiza la existencia de funciones potenciales A, (x) y ¢(z), reforzando la consistencia
interna del modelo. Este resultado es fundamental, ya que establece un vinculo directo entre la
dindmica del sistema y la geometria de los campos que lo gobiernan.

3.2. Ecuaciones Homogéneas de Maxwell.

Con base en la seccién anterior, podemos escribir la siguiente expresion:

. d (0A,
Fu =-m{t,, &} ={z,, F,} + ar <87Tﬂ> . (84)

Utilizando la identidad de Jacobi en términos de los momentos, tenemos:
{zv, {Amu, mp}} + {mps {mps w0} + {mp, {20, 0} } = 0. (85)
Desarrollando y haciendo una relacién con las coordenadas:
{0} = (i A}~ (A} = (A A). (36)
Ahora destacamos el siguiente resultado:
m{dy, Ay} = =0, Ay — {Ay, A} (87)

Por lo tanto, podemos sustituir:

.. 1 1 1 1
m{xu,x,,} = %aMAV + E{AN’AV}aVAN — %{Ay, A'u} — E{Au, AI/} (88)
. 1 1
mi{d,,,} = - (OuAy — 0, AL +{AL AL} = EFW' (89)
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Y sabemos por las deducciones anteriores cual es la forma del tensor del campo de gauge por
(73), de dénde podemos encontrar la expresién:

OaFpy = 0a(04A, — 0V AL+ {AL, AL}). (90)
Desarrollando a (90), podemos llegar a lo siguiente:
OaFpy + 0uFya + 0, Foy = 00{Au, A} + 0u{Av, Aa} + 0u{An, Au} (91)
Y por lo tanto:
{Fou Av} + {Fva, A} + {Fuv, Aa} = 0aFw + 0uFya + 0y Fayp. (92)
Reescribiendo:
OaFy —{Fuv, A} + 0uFva — {Fra, Ap} + 0uFoy — {Fop, Av} = 0. (93)
Ahora podemos definir la derivada covariante como:
Do =00 — {Fuv, Aa} (94)
Con base en esta definicién, podemos encontrar lo siguiente:
DoFuy + DyFya + Dy Foy = 0. (95)

Esta es la expresién para las ecuaciones homogéneas del campo electromagnético.

4. Ecuaciones inhomogéneas de Maxwell.

Sin embargo, existen otras dos ecuaciones de Maxwell a tratar en nuestra demostracion:

div E = 4mp, (96)
E
_85% +rotH = 4. (97)

Las cuales son descartadas de la prueba de Dyson [1], sobre la base de que simplemente definen
las densidades de carga y corriente externas p y J. Sin embargo, se observa que no son simultanea-
mente invariantes de Lorentz y de Galileo[3], [7], [8]. Para poder llevar a cabo dichas expresiones
faltantes, podremos operar de diversas maneras.

4.1. El caso no abeliano.

Ahora, todo lo anterior mencionado, sugiere que las ecuaciones cldsicas de campo gauge no
abeliano podrian obtenerse de la regla de acoplamiento minimo a través de una condicién especial
sobre {A,, A, }. Ya que, a diferencia del caso electromagnético, los potenciales no conmutan entre si.

Podemos empezar considerando una particula clasica moviéndose bajo la influencia de un campo
gauge no abeliano. Su dindmica estd determinada por la regla de acoplamiento minimo:

= mat + AP (z, 1), (98)
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donde A* es el potencial gauge que depende de las coordenadas x* y de las variables internas
1%, que codifican el “color”.

Escribimos:
At (z, ) = A (x)I°. (99)

Y asumimos que los I® satisfacen el dlgebra de Lie:
{19, 1%} = —fabere, (100)

Donde f*¢ son las constantes de estructura del grupo de simetria.
Ahora podemos definir el tensor de campo como:

PP = —m{it 2"} (101)

Donde los corchetes de Poisson estédn definidos sobre el espacio de fases extendido (z#,w#, ).
A partir de (94), se tiene:

1
it = — (ot — AM). 102
B = — (- A¥) (102)
Por lo que podemos escribir:
. -V 1 v 14 1 14 14 14
{zH, 3"} = W{W“ —A¥ ¥ — AV} = poos) (—OFAY + 0" AF + {AF AV} . (103)

Y llegamos a expresar lo siguiente:
Fr = 9FAY — 9V AF 4 {AF, AV}

Que es la expresién que ya conocemos de demostraciones anteriores.

Y ahora, usando la expansién A" = AL (x)I* y la regla (96):
{AH AVY = AP AY{TO, 1) = — AP AY fobere, (104)
Gracias a esto podemos escribir lo siguiente:
FIY = OMAY — OV Al + [ ARAY. (105)

Ahora, consideramos la identidad de Jacobi clasica para los corchetes de Poisson sobre las
trayectorias x#(7):

{o% {2, &} + {a, {2", 2% + {a", {=%,2"}} = 0. (106)

Aplicando esta identidad al campo F*”, se obtiene la versién no abeliana de la identidad de
Bianchi:
DoFyy + Dy Fyo + Dy Foy = 0. (107)

Donde la derivada covariante actia sobre tensores del dlgebra de Lie como:
(DuFH*)® = 8, FL + foC AL FE”. (108)
Finalmente, por consistencia del sistema, debe existir una corriente conservada j% tal que:
(D) = jg .- (109)

Esta ecuacion es la versién no abeliana inhomogénea de las ecuaciones de Maxwell.
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5. Conclusiones

Este trabajo ha explorado sistematicamente el enfoque de Feynman-Dyson para derivar las
ecuaciones del electromagnetismo a partir de principios mecéanicos fundamentales. Partiendo de la
formulacién original galileana, hemos extendido y unificado diversas generalizaciones del método,
destacando cémo la estructura de los corchetes de Poisson conduce naturalmente a la fuerza de
Lorentz y a las ecuaciones homogéneas de Maxwell.

En primer lugar, reconstruimos la derivacion clasica en el espacio euclideo, mostrando cémo
las relaciones de conmutacién entre posicion y velocidad —andlogas a las de la mecanica cuantica—
permiten deducir la forma de la fuerza electromagnética y las leyes de divergencia magnética nula
y Faraday. Este marco revela una profunda conexion entre la dindamica de particulas y la teoria de
campos, aunque presenta limitaciones en su covariancia relativista.

Para superar estas restricciones, desarrollamos una formulacién covariante en el espacio-tiempo
de Minkowski. Aqui, la métrica 7, se incorpora explicitamente en la definicién de los corchetes de
Poisson, preservando la invariancia Lorentz. Esta extensién no solo generaliza la fuerza de Lorentz
al caso relativista, sino que también esclarece el papel del tensor electromagnético F},, y su relacién
con potenciales que dependen del momento, introduciendo términos no minimos en el acoplamiento
(G).

Adicionalmente, abordamos el caso no abeliano mediante la inclusion de variables internas de
color I* que satisfacen algebras de Lie. Este enfoque permite derivar ecuaciones tipo Yang-Mills,
donde la no conmutatividad de los potenciales conduce naturalmente a la versién inhomogénea de
las ecuaciones de Maxwell en presencia de cargas no abelianas. La derivada covariante D,, emerge
asi como una herramienta geométrica esencial para garantizar la consistencia dindamica.

= Direcciones futuras:

e Extender el formalismo a variedades pseudo-Riemannianas para incorporar gravitacién
e Explorar generalizaciones en geometrias no conmutativas (k-Minkowski)

e Investigar implicaciones en teorias de campo efectivas donde emergen acoplamientos no
minimos
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Apéndice

A. Conmutadores

Este apéndice recoge las herramientas algebraicas esenciales utilizadas en la derivacién de las
ecuaciones de Maxwell. Los conmutadores, definidos como operaciones bilineales antisimétricas,
juegan un papel central en la conexién entre la dindmica de particulas y la teoria de campos
electromagnéticos.

A.1. Identidades basicas

Las siguientes identidades son fundamentales para el desarrollo de las demostraciones:

= Identidad de Jacobi: Estructura algebraica que garantiza consistencia en algebras de Lie:

[A,[B,C|+ [B,|C, A]] + [C,[A,B]] =0 (110)

= Regla de Leibniz I: Comportamiento del conmutador frente a productos:

[A, BC| = [A, B]C + B[A, C] (111)
= Regla de Leibniz II: Derivacién temporal de conmutadores:

d dA dB} (112)

—[4.B] = [dt,B} + [A,dt
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A.2. Definicion y propiedades algebraicas

El conmutador de dos operadores A y B actia sobre funciones prueba 1) como:

[A, Bl = A(By) — B(Av) (113)

De esta definicién se derivan propiedades clave:

[A,A] =0 (Nilpotencia) (114)
[A, B] = —[B, 4] (Antisimetria) (115)
[A,F(A)] =0 (Conmutatividad funcional) (116)
[A,B+C]=1[A,B]+[A,C] (Linealidad) (117)
[A, BC| = B[A,C] + [A, B|]C (Regla de derivacién) (118)

A.3. Relaciones de conmutacién candnicas

Para operadores de posicién (Z;) y momento (p; = —ihd;), las relaciones fundamentales son:

= Conmutatividad espacial:

s Conmutatividad del momento:
[pi,pj] =0 (120)
= Relacién canodnica:
[z, p;] = ihdsj (121)

La derivacién de (121) se obtiene directamente de la accién sobre funciones prueba:
[z5, pj]ih = ihdijap (122)

A.4. Expresion generalizada para funciones

Para funciones F(x, %) y G(x,%), el conmutador adopta la forma:

oG OF oG OF . 0G OF . oG oF
[F,G] = %: <[9€k,$z]8 92 + [l”k,xz]aixkaxl + [Tg, l]a on + [T, & l]a k&rz) (123)

Esta expresion general es particularmente ttil al trabajar con espacios de fases extendidos en
las formulaciones relativistas y no abelianas desarrolladas en el articulo.
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Resumen

En este trabajo se exploran los conceptos de representabilidad y de objeto universal, asi co-
mo el Lema de Yoneda, todo esto perteneciente a la teoria de categorias. Se presentan diversos
ejemplos para ilustrar los conceptos. Para esto, son considerados objetos de distintas areas de las
matematicas, como Algebra Lineal, Topologia, Teoria de Anillos, entre otras. Ademas, se propor-
cionan demostraciones para los resultados.

Palabras claves: Funtores representables, lema de Yoneda, Teoria de categorias, transformaciones
naturales.

Abstract

In this work we explore the concepts of representability and universal object, as well as Yoneda’s
Lemma, which belong to Category Theory. We provide several examples to illustrate the concepts.
In order to do this, we consider objects coming from different mathematical fields, such as Linear
Algebra, Topology, Ring Theory, among others. Besides, we provide proofs for the results.

Keywords: Representable functors, Yoneda’s lemma, Category Theory, Natural Transformations
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1. Introduccion

La teoria de cateogorias es un lenguaje bastante abstracto pero que, al contextualizarlo de ma-
nera adecuada, resulta ser muy expresivo, de tal forma que permite describir hechos, situaciones o
comportamientos que tienen algunos objetos matematicos. Es pertinente mencionar que estudiar
por primera vez esta teoria puede ser complicado, y esto es debido a su alto nivel de abstraccion;
como se vera mas adelante, se hablara de “objetos” y “morfismos”, sin decir qué son, mencionando
sélamente cémo deben comportarse.

En esta teoria, la atencién se centra en las relaciones que hay entre los objetos de una categoria
(morfismos); las relaciones entre categorias (funtores) y las que hay entre funtores (transformacio-
nes naturales). De hecho, el concepto de categoria es auxiliar; los conceptos béasicos son los de funtor
y de transformacién natural. Esto fue dicho por los mismos autores (Samuel Eilenberg y Saunders
Mac Lane) en su articulo seminal “General Theory of Natural Equivalences” [1], publicado en 1945.

La generalidad de la teoria de categorias permite ver similitudes que se encuentran entre dos
areas de las matemadticas que no parecieran tener algo en comun. En realidad, es asi que nace
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la teorfa: aunque el primer escrito fue publicado en 1945, sus origenes pueden rastrearse un poco
ma&s atras, en un encuentro entre MacLane y Eilenberg en 1942. Por una parte, Eilenberg estaba
interesado en calcular grupos de homologia, cohomologia y homotopia. Por otra parte, Mac Lane
estaba interesado en extensiones de grupos. Fue en una serie de platicas dadas por Mac Lane y
atendidas por Eilenberg, que este tltimo noté ciertas coincidencias entre los trabajos de ambos.
Investigar estas coincidencias fue lo que llevé a la nocién de funtor y de transformacién natural [6].

Répidamente se aprecia el poder de las categorias; en 1957, Grothendieck publica el revolucio-
nario articulo “Sur quelques points d’algebre homologique”, en donde la utiliza de manera extensa,
no sélo como un lenguaje en el cual expresarse y organizar de manera sistemdatica campos de las
matemaéticas (como la topologia algebraica), sino también como una herramienta para probar re-
sultados matematicos [6].

Naturalmente, el interés por la teoria de categorias persiste. El objetivo de este articulo es
hablar acerca de los funtores representables, del Lema de Yoneda y objetos universales; daremos
sus definiciones, se presentan ejemplos, se enuncian y demuestran algunos resultados relacionados
a ellos. Aunque para poder llegar a dichos conceptos, habremos de pasar por le definicién de cate-
goria, funtor y transformaciones naturales.

Las definiciones y resultados (aunque aqui se ofrecen pruebas de éstos) relacionados con la
teoria de categorias que se presentan pueden encontrarse tanto en [5] como en [10]; sin embargo,
este ultimo tiene un tratamiento un poco méas moderno y es el que se prefiere. No obstante, la
esencia sigue siendo la misma.

Finalmente, este texto esta dirigido a personas que tengan conocimientos béasicos de topologia
(de conjuntos) como en [7], lgebra lineal y dlgebra abstracta [4]. No se espera conocimiento alguno
de teoria de categorias.

Finalmente, para los lectores con mas bagaje matematico: se ha mencionado que la teoria de
categorias encuentra conexiones entre diferentes areas de las matematicas. A continuacién son
mencionados ejemplos mas elaborados de su uso:

= Los conjuntos junto con las funciones forman la categoria Set; los esquemas junto con sus
morfismos forman la categoria de esquemas, que se denota por Sch [3] . Los funtores F :
Sch — Set aparecen en la teorfa de espacios y problemas moduli (problemas de clasificacién)
[8].

» El primer grupo de homotopia (o grupo fundamental) induce un funtor entre la categoria de
espacios topolégicos puntuados (es decir, un pares (X, z), donde X es un espacio topolégico
y x es un elemento fijo de X) y la categoria de grupos, Gr [12].

= Se tiene una relacién entre la topologia diferencial y el lgebra lineal dada por un funtor
que va de la categoria de las variedades suaves, Diff a los espacios vectoriales reales Vecg, el
cual manda una variedad suave M al espacio (vectorial) de las funciones suaves f: M — R,
denotado por C*°. Por otra parte, un mapeo suave entre variedades F': M — N se convierte
en una transformacién lineal F™* bajo la accién de tal funtor [9, 12].

De manera particular, la referencia [12] utiliza de forma extensiva el lenguaje de las categorias
(v otras teorias) en el estudio de las variedades topolégicas.
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2. Categorias, funtores y transformaciones naturales.

Convencion: En los ejemplos relacionados con anillos, se da por hecho que todos tienen uni-
tario, al cual denotaremos por 1, y que los homomorfismos de anillos preservan el unitario. Para
mayor informacién sobre la teoria de anillos (y en general, del dlgebra que se utilizard en el texto)
una referencia es [4].

2.1. Categorias

Las categorias estdan compuestas de objetos y de morfismos entre ellos. A continuacién se men-
cionan las cosas que debe cumplir una categoria. En primer lugar, los morfismos entre las cosas se
pueden componer: siempre que existe un diagrama

fﬁ

< W

A

Q

éste se puede completar con

i

.QTUU

of

Ademsds, la composicion es asociativa:

fo(goh)=fogoh=(fog)oh.

Por 1ltimo, siempre existe un morfismo 14 : A — A de tal forma que se tienen los siguientes
diagramas conmutativos:

A%B

A4y g
(0]
g:gom lg f=1gof llB
B, B.

De manera més formal, la definicién de categoria es la siguiente:
Definicién 2.1. Una categoria A consta de
i) una clase ob(A) de objetos en A;

i1) para cada par de objetos A, B existe un conjunto Mor 4(A, B) (también denotado por Mor(A, B),
si no hay riesgo de confusion) de morfismos (o flechas o funciones) que van de A a B;

iii) para objetos A, B,C en la categoria existe una funcion

MOI‘A(B,C)XMOI“A(A,B) — MOI"_A(A,C)
(9, f) = golf,

que es llamada composicion,
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iv) para cada objeto A existe un elemento 14 en Mor (A, A), que es llamado la identidad en

A,

que satisfacen los siguientes axiomas:

a)

b)

¢)

asociatividad de la composicion: para cada f € Mora(A,B), g € Mory(B,C) y h €
Mor 4(C, D) tenemos

(hog)of=ho(gof);

ley de identidad: para cada f € Mor 4(A, B) tenemos

Los conjuntos Mor(A, B) son disjuntos por pares.

Algunos ejemplos

Los siguientes son ejemplos de categorias, los cuales pueden consultarse en [10] y [4], principal-
mente. No obstante, la categoria T'opx aparece en [2] y en [3].

Ejemplo 2.1. 1) Categoria Set: La coleccion de conjuntos y las funciones entre ellos son una

categoria. En efecto: en esta categoria los objetos son los conjuntos y los morfismos son las
funciones. La composicion de morfismos es la composicion usual de funciones, la cual satisface
la ley de asociatividad. Por ultimo, para todo conjunto X existe una funcion f que va de X
en X definida por f(x) = x (que es llamada funcion identidad). Esta funcion cumple con la
ley de la identidad de la definicion de categoria.

Categoria Vecg: El conjunto de espacios vectoriales sobre un campo K con las transforma-
ciones lineales forman una categoria, la composicion de morfismos es la composicion usual
de transformaciones lineales y el morfismo identidad es la transformacion lineal identidad.

Categoria Ring: La coleccion de anillos con los homomorfismos, la composicion de homo-
morfismos (que es la composicion usual de funciones) y el homomorfismo identidad conforman
esta categoria.

Categoria Top: Esta categoria estd conformada por la coleccion de espacios topoldgicos junto
con las funciones continuas, la composicion de funciones y la funcion identidad.

Categoria Topx: Sea X un espacio topologico. Los componentes de esta categoria son:

i) Los abiertos de la topologia serdn los objetos de la categoria.

i1) Si Up, Uy son abiertos en X tales que Uy C Uy, entonces se define la funcion inclusion
i : Uy — Uy con regla de correspondencia i(x) = z, para todo x € Uy; las funciones
inclusion serdn los morfismos de la categoria.

i1i) La composicion de los morfismos es la composicion usual de funciones.

iv) El morfismo identidad es la funcion identidad I : Uy — Uy.

De hecho, hay muchas mas estructuras, como anillos, grupos, espacios vectoriales, o espacios
topoldgicos, las cuales se relacionan o determinan mediante un tipo distinguido de funcién: los
isomorfismos. Esto da lugar a la siguiente definicién:
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Definiciéon 2.2. Un morfismo f : A — B en la categoria A es un isomorfismo si existe un
morfismo g: B — A tal quego f=14y fog=1p.

Asi, por ejemplo, los morfismos en la categoria de anillos son los isomorfismos de anillos; los
isomorfismos en la categoria Topx son las funciones identidad, y en la categoria Set son las fun-
ciones biyectivas.

2.2. Funtores

Asi como los objetos estan conectados por morfismos, asi también las categorias estan conecta-
das por funtores. Un funtor lo se denota con una flecha indicando la categoria de donde parte a la
categoria donde llega. Por ejemplo, un funtor de la categoria A a la categoria B lo escribimos por
A — B, y si queremos ser mas especificos y mencionar el nombre del funtor, hacemos F : A — B.
Un funtor lo que hace es tomar objetos y morfismos en A y mandarlos como objetos y morfismos
en B. Hay dos tipos de funtores, los covariantes y los contravariantes. En un momento decimos cudl
es la diferencia.

Utilicemos nuevamente los diagramas: si f : A — By g : B — C son morfismos en A (natural-
mente, A , By C son objetos en A), entonces

(a-LB) & <f(A) 7U) ]-"(B))

si el funtor es covariante, y si el funtor es contravariante:
F
(a-LB) & <}“(B) ) }'(A)) .
A continuacién, se presentan dos ejemplos de funtores, primero uno covariante y luego otro
contravariante.
Ejemplo 2.2. Se definine el funtor olvidadizo F : Vecxg — Set, el cual
» manda un espacio vectorial (V,+,%*) a su conjunto subyacente F((V,+,%)) =V;

» y una transformacion lineal f : V. — W la convierte en la funcion de conjuntos F(f) :
F(V) = F(W), que tiene la misma regla de correspondencia de f.

Puesto en palabras llanas, este funtor “olvida” la estructura de los objetos en la categoria Vecy.
De manera similar puede definirse un funtor olvidadizo para las categorias de grupos, anillos, etc.

Ejemplo 2.3. Dada una categoria A, como los morfismos que van del objeto X al objeto B (pa-
ra cualesquiera X y B en A) forman un conjunto, entonces siempre podemos definir el funtor
Mor(—, X) : A — Set de la siguiente forma:

» a un objeto A en A se le asigna el objeto Mor(A, X) en Set, que es el conjunto de todos los
morfismos que van de A en X;

» y dado un morfismo f: A — B en A, se tiene un morfismo en Set (es decir, una funcion de
conjuntos) Mor(f, X) : Mor(B, X) — Mor(A, X) definida por

Mor(f,X)(g9) =go f,
para todo morfismo g € Mor(B, X).
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Puede explicarse con un diagrama:

Mor(B,X) — Mor(A, X)
B A
o e
X X.

Para ser mds concretos, se considera la categoria de espacios vectoriales sobre R, Vecgr. Se
definird el funtor
Mor(—,R) : Vecgr — Set.

Ast, si se toma un objeto en Vecg, por decir, R®, entonces se tiene el conjunto
Mor(R3,R) = {a:R* = R| « es lineal}.

Por otra parte, la funcion lineal o : R? — R? definida por a(z,y) = (z,y,20) (donde zy es una
constante), define una funcion de conjuntos

Mor(a, R) : Mor(R3* R) — Mor(R? R)
B — Boa.

Si se considera 3 : R> — R definida por B(x,y, z) = (x,y+ 2,y — z), entonces Mor(a, R)(3) = Boa
es una funcion lineal que va de R? en R y que estd definida por

(60 Oé)(l',y) - 6($,y,Z0) = (iL‘,y+ 20,Y — Z())-

2.3. Transformaciones Naturales

A continuacién se definen las transformaciones naturales, que son las relaciones que hay entre
funtores. Se comienza con dos funtores contravariantes F,G : A — B. Consideremos un morfismo
f+A— Ben A. Cuando se aplican los funtores obtenemos dos morfismos F(f) : F(B) — F(A)
y G(f) : G(B) — G(A) (y por lo tanto, cuatro objetos) en la categoria B. Es posible que hayan
morfismos 74 : F(A) — G(A) y 75 : F(B) — G(B) en la categoria B, con lo cual se tendrian los
diagramas

F(B) —2- G(B) F(B)

Jow 0|
G(A) F(A) —— G(A).

Como se vio antes, siempre que se tienen diagramas de ese estilo, es posible componerlos (como en
el diagrama (1)), teniendo asi

F(B) -~ G(B) F(B)
TAOF(f)
s Je0 Vol N
G(A) F(A) —— G(A).
Se centra la atencién solamente en el conjunto de morfismos 7_ tales que

Tao F(f) =G(f)oTs.

Asi, la definicion de transformacién natural es:
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Definicion 2.3. Considérense dos funtores F,G : A — B. Una transformacion natural 7 : F — G
se define como un conjunto de morfismos 74 : F(A) — G(A) en B que hacen conmutar el diagrama
siguiente:

F(B) —"= G(B)

F(f)l lg(f)

F(A) ——= G(4).

Si T es un isomorfismo para todo objeto B en B, entonces T se dice que es un isomorfismo
natural y que F y G son naturalmente isomorfos.

Esta es la forma correcta de definir las relaciones entre funtores. En la siguiente seccién se pre-
senta un ejemplo de una transformacién natural.

3. Funtores Representables

Los funtores representables son los que se parecen o se comportan como un funtor del tipo
Mor(—, A) (o bien, Mor(A, —)). Las transformaciones naturales seréan utilizadas para dar un senti-
do exacto a esto y se probara que el funtor olvidadizo F : Vecg — Set es representable.

Definicién 3.1. Un funtor F : A — Set contravariante se dice representable (por un objeto
X en A) siempre que F sea naturalmente isomorfo al funtor Mor(—, X) : A — Set.

Observacién inmediata: como F y Mor(—, X) son naturalmente isomorfos, entonces para cada
objeto A en A existe una biyeccién entre los morfismos que van de A en X, Mor(A4, X), y el con-
junto F(A).

Ejemplo 3.1. En este ejemplo se demuestra que el funtor olvidadizo es representable: para ello se
construye una transformacion natural entre F y Mor(R, —) y se demuestra que, de hecho, es un
isomorfismo natural. Obsérvese que toda funcion lineal T : R — V' cumple T'(r) = rT(1), basta con
decir quién es T'(1) para que la funcion lineal quede determinada. Asi, la transformacion natural o
que se propone estd definida por

ay : F(V) — Mor(R,V)
v — Ty,

en donde T, es una transformacion lineal que cumple que T(1) = v.
Luego, sea
By : Mor(R,V) — F(V)
T —  T'(1).
Como (By oay)(v) =v y (ay o By)(T) = T, tenemos que avy es una funcion biyectiva para

cualquier V, luego, la transformacion natural o es un isomorfismo natural y por consiguiente F es
un funtor que estd representado por R.

Se resalta la biyeccion F(V) ~ Mor(R, V) para cada objeto V: hay tantas transformaciones
lineales R — V' como elementos en F(V'), o bien, tantas como vectores en V.
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Un hecho por el cual interesan tanto los morfismos como el funtor Mor(—, X) es que éstos
determinan a un objeto. De forma precisa: si Mor(—, X) ~ Mor(—,Y), entonces X ~ Y. Mis
adelante serd dada una demostracion de esto. Primero, se hablara sobre un resultado central en la
teoria de categorias: el Lema de Yoneda.

4. Lema de Yoneda

El Lema de Yoneda involucra transformaciones naturales entre funtores con categoria de llega-
da Set, F : A — Set y Mor(—, X), con X en A y se relaciona con la siguiente pregunta ;cudntas
transformaciones naturales existen entre F y Mor(—, X)?

Se enuncia y demuestra la siguiente proposicién, que es conocida como la forma débil del Lema
de Yoneda:

Proposicién 4.1. Para cualquier funtor contravariante F : A — Set, cualquier objeto A € ob(.A)
y cualquier elemento a € F(A), existe una unica transformacion natural T : Mor(—, A) — F con
TA(lg) = a.

Demostracion. Para cualquier objeto B en A definimos una funcién

78 : Mor(B,A) — F(B)
f = F(f)(a).

Nétese que f: B — Ay F(f): F(A) = F(B) (pues F es contravariante), por lo que F(f)(a) €
F(B) y entonces la funcién 7p estd bien definida. Se quiere construir una transformacién natural

7 cuyos morfismos componentes son las funciones 7p. Para ello, debe considerarse el morfismo
h:C — B en Ay se verifica que el siguiente diagrama conmuta:

Mor(B, A) —2— F(B)
lMor(h,A) l}'(h) (2)
Mor(C, A) —<— F(C)

Téngase presente que F(h) o1p y 7¢ o Mor(h, A) son funciones entre conjuntos y para mostrar que
son iguales, debemos ver que tienen el mismo dominio y contradominio (lo cual es evidente) y regla
de correspondencia. Se comprueba esto 1ltimo. Por una parte

(F(h) o7B)(f) = F(h)(F(f)(a))
= (F(h) o F(f))(a)
F(foh)(a),

por otro lado,

(tc o Mor(h, A))(f) = Tc(Mor(h, A)(f))
=71c(foh)
— F(foh)(a).

Asi, F(h) ot = 7¢ o Mor(h, A) y por consiguiente el diagrama (2) conmuta. En consecuencia, 7
es una transformacién natural.
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Obsérvese, también, que 74(14) = F(la)(a) = la(a) = a. Ya se encontré la transforma-
cién natural que cumple la condicién del enunciado, falta probar que es uUnica. Supdngase que
9 : Mor(—,A) — F es otra transformaciéon natural que satisface d4(14) = a. Se probara que
d0p = 7B para cualquier objeto B en A, concluyendo asi que § = 7 y que por lo tanto 7 es tnica.
Considérese un morfismo g : B — A y el diagrama conmutativo

Mor(A, A) —24 F(A)
J/Mor(g,A) i]:(g) (3)
Mor(B, A) —2~ F(B).

De la conmutatividad del diagrama se tiene que

F(g)(a) = F(g)(da(1a)) = (F(g) 0d4)(14)
= (0p o Mor(g, A))(14)
=0dp(laoyg)
= 0B(9).

Pero como 75(g) = F(g)(a), entonces 75(g) = dp(g), y eso se puede probar para cualesquiera
g € Mor(B,A) y objeto B en A, por lo que se concluye que 6 = 7. Con esto se termina la
demostracion. ]

De la proposicién anterior se desprende el siguiente corolario, que es conocido como el Lema
de Yoneda. Se introduce notacién: dado un objeto A en una categoria Ay F : A — Set un funtor
contravariante, se denotara por [Mor(—, A), F] al conjunto de todas las transformaciones naturales
de Mor(—, A) en F.

Corolario 4.1 (Lema de Yoneda). Si F : A — Set es un funtor y A es un objeto de A, entonces
la funcidn
Y : [Mor(—,A),F] — F(A)
o — o4(la),

(4)
es una funcion biyectiva.

Con estos resultados es posible probar el siguiente resultado.

Corolario 4.2. Considérese un funtor contravariante F : A — Set. Si Mor(—, X) ~ F ~
Mor(—,Y), entonces X ~ Y.

Demostracion. La demostracion consistird en encontrar morfismos f : X - Y y g:Y — X tales
que fog=1ly y go f = 1x, es decir, probar que existe un isomorfismo entre X y Y. En principio
de cuentas no se sabe cudl es el isomorfismo natural que hay entre Mor(—, X)) y Mor(—,Y"), pero
es sabido que para todo objeto A en A existe una biyeccion Mor(A, X) ~ Mor(A4,Y"). Dendétese al
isomorfismo natural por 7 : Mor(—, X) — Mor(—,Y) y por 7=! : Mor(—,Y) — Mor(—, X) a su
inversa. En particular se tienen las biyecciones

v Mor(Y,Y) — Mor(Y, X) (5)

Tx : Mor(X,X) —» Mor(X,Y). (6)
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De (5) se sabe que existe un unico morfismo g € Mor(X,Y) tal que 7x(1x) = g y de (6) tenemos
un tnico f € Mor(Y, X) tal que 75 (1y) = f.

Por otra parte (se sigue considerando g € Mor(X,Y) y f € Mor(Y, X)), nétese que la transfor-
macién natural Mor(—, g) : Mor(—, X) — Mor(—,Y") definida por

Mor(Z, g)(h) = goh,
para todo objeto Z en Ay h € Mor(Z, X), satisface
Mor(X, g)(1x) =goly =g =7x(lx).
Mientras que la transformacién natural Mor(—, f) : Mor(—,Y) — Mor(—, X) definida por
Mor(Z, f)(h) = f o h
cumple que
Mor(X, f)(ly) = foly = f = T;I(ly).
Luego, por la proposicién 4.1, 7 = Mor(—, g) y 7~ = Mor(—, f), por lo tanto,
Ix =75 (7x(1x)) = 7x ' (9)
= Mor(X, f)(9)

= fog.
Anslogamente
ly =7v(ry ' (1y)) = 7v(f)
= Mor(Y, )(f)
=gof.
Por lo tanto, X ~ Y. ]

Si F: A — Set es un funtor que estd representado por X a través de la transformacién natural
T, entonces, por definicién de representabilidad y por el lema de Yoneda se tienen las siguientes
biyecciones:

[Mor(—, X), F] ~ F(X) ~ Mor(X, X).

Ejemplo 4.1. Se comienza este ejemplo [11] 1 haciendo una diferencia entre forma polinomial y
funcion polinomial: dado un anillo R, una forma polinomial (o simplemente polinomio) P , con
coeficientes en el anillo R y con la indeterminada X, es una expresion formal

P(X)=agX%+ ...+ a1 X + ag,
mientras que una funcion polinomial P de R en R se define como

Pr : R — R
o agr®+ ...+ ar + ag.

En la notacion de funcion polinomial se especifica en qué anillo se trabaja, pues debe dejarse
en claro que hacer una distincion entre funcion y forma polinomial no es un exceso de formalidad,
por ejemplo:

'El ejemplo ests inspirado en una entrada de una pagina de internet hecha por T. Tao [11]
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m P =X yQ = —X son diferentes como formas polinomiales, sin embargo coinciden cuando
se interpretan en el anillo Z/27Z, puesto que n = —n, para todo elemento n de dicho anillo.

» el polinomio X% + 1 no tiene raices cuando se interpreta como polinomio en R, mientras que
st las tiene cuando se interpreta como polinomio en los numeros complejos.

De lo anterior podemos observar que si se considera una forma polinomial en un solo anillo es
posible que se pierda informacion. Mds adelante se verd que las transformaciones naturales permi-
ten considerar las formas polinomiales en todos los anillos al mismo tiempo.

El conjunto de polinomios con coeficientes en un anillo R y con indeterminada X, junto con su
producto y suma usual forman un anillo, que se denota por R[X]. Un anillo de polinomios que serd
conspicuo en todo este ejemplo es el de polinomios con coeficientes en los enteros, Z[X]. Ndétese
que cualquier polinomio P(X) = agX%+ ... + a1 X + ag en Z[X] induce una funcion polinomial en
cualquier anillo R consigo mismo: una funcion polinomial de la forma Pgr, definida como antes.

Ademds, si ¢ : R — S es un homomorfismo de anillos, la siguiente igualdad se cumple:
Psop=¢poPpg. (7)

No es dificil convencerse de que esto es cierto. Solamente debe tenerse en cuenta que, si n es
un entero y r € R, entonces p(nr) = np(r), y en particular, sir = 1g (el elemento unitario de R),
entonces p(nlr) = np(lg) = nlg. Abusando un poco de la notacion, se escribird nlg = n. Luego,
sir € R se sigue que

(Ps o) (r) = Ps(ep(r))
= ago(r)t+ ... + a10(r) + ag
= o(agrt+ ... + a1 + ap)
= ¢(Pg(r))
= (o Pg)(r)

La siguiente parte del ejemplo consiste en utilizar el lenguaje de las categorias.
Considérese el funtor olvidadizo

F : Rings — Sets,
en donde, si p: R — S es un homomorfismo de anillos, entonces
» F(R) y F(S) son los conjuntos subyacentes del anillo R y de S, respectivamente.

» F(p) : F(R) — F(S) es una funcidn de conjuntos con misma regla de correspondencia que
p.

En este punto se aplica el Lema de Yoneda, el cual asevera que hay tantas transformaciones
naturales entre Mor(R, —) y F como elementos en F(R), para todo anillo R. En simbolos:

[Mor(R, —), F] ~ F(R) (8)

Ahora se construye una transformacion natural F — F. Se retoma lo dicho al inicio del ejemplo:
La forma polinomial P = agX® + ... + a1 X + ag en Z[X] serd la transformacion natural, y las
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funciones polinomiales Pr serdn los morfismos componentes, para cada anillo R. En efecto, el
diagrama

F(R) 25 F(R)

F (w)l JF ()

F(S) 5 F(S),

conmuta gracias a la ecuacion (7).

Es momento de hablar de los morfismos de evaluacion. Dado cualquier anillo R, siempre puede
definirse un homomorfismo de anillos

Op, : Z[X] — R
P —  P(r).

Notese que basta con especificar cudl es el elemento de R que se corresponde con el polinomio
X para definir por completo al homomorfismo de evaluacion.
Ahora se define ® : Mor(Z[X],—) — F. Para cada anillo R, se tiene la funcion

®r : Mor(Z[X],R) — F(R)
f — f(X).

Sea ¢ : R — S un homomorfismo de anillos. Se demostrard que el diagrama

Mor(Z[X], R) " F(R)

Mor(Z[X],) lf ()

Mor(Z[X],S)?]:(S)

conmuta. Sea f € Mor(Z[X], R). Luego,

(F(p) o @r)(f) = F()(f(X)) = o(f(X))-

Por otro lado,

(@50 Mor(Z[X],9)) (f) = s (po f) = (po )X) = e(f(X)),

por lo que
F(p) o p = P50 Mor(Z[X], ¢),

y entonces ® es una transformacion natural.

Una sencilla observacion es que todo homomorfismo de anillos f : Z[X] — R es un homo-
morfismo de evaluacion: f = ®p rx). Recuérdese, ademds, que basta decir cudl es la imagen de
X para que el morfismo de evaluacion quede completamente definido. Por otra parte, para ca-
da v € R existe un morfismo de evaluacion: ®r,. Con lo cual, lo que se estd probando es que
O : Mor(Z[X], R) — F(R) es una biyeccion, para todo anillo R. Por lo tanto, ® es un isomorfis-
mo natural y entonces F estd representado por Z[X].
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Asi,
F =~ Mor(Z[S],—)

y la ecuacion (8) se convierte en
F(Z[X]) ~ [Mor(Z[X],—), F],

y entonces las formas polinomiales P estdn en biyeccion con las familias de funciones polino-
miales Fr que satisfacen la ecuacion 7.

5. Objetos Universales

El Lema de Yoneda y la representabilidad de un funtor F llevan a un objeto de interés. Por
el lema débil de Yoneda se tiene que para cualquier objeto X en C y x € F(X) existe un tnica
transformacion natural 7 : Mor(—, X) — F que cumple

7x : Mor(X,X) — F(X)
1x — x

Ahora supéngase que F estd representado por A. Si eso ocurre, entonces
F(A) — Mor(A4, A)

es una biyeccién, por lo tanto existe un unico a € F(A) tal que a — 14. Considérese un objeto X en
Cy z € F(X). Nuevamente, por la representabilidad de F es sabido que existe un (tinico) morfismo
f tal que x — f € Mor(X, A). Esto dltimo se puede comprobar gracias al diagrama conmutativo

FA)sa—T9 0 Fx)

! I

Mor(A, A) > 1AMm)f € Mor(X, A)

Obsérvese que F(f)(a) = z; ain més, el morfismo f es el inico morfismo que lo cumple.

Definicion 5.1. Sea F : C — Set un funtor contravariante. Un objeto universal para F es un
par (X, x), donde X es un objeto en C y x € F(X), el cual tiene la propiedad de que para cada
objeto A de C y cada a € F(A), eziste un unico morfismo f : A — X tal que (F(f))(z) = a € F(A).

Para llegar al objeto universal fue necesario suponer que el funtor estaba representado. Sin
embargo, la relacién entre objeto universal y representabilidad es més estrecha, puesto que no
existe el uno sin el otro, como se establece en la siguiente proposicién.

Proposicion 5.1. Un funtor F : C? — Set es representable si y solo si tiene un objeto universal.

Demostracion. Ya se ha probado que representable implica la existencia de familia universal, ahora
se demuestra que la familia universal implica representabilidad. Supéngase que (A, a) es un objeto
universal para F. Se define una transformacién natural ® : 7 — Mor(—, 4), en donde, para cada
objeto X en C se tiene
o(X) : F(X) — Mor(X,A)
T = Jz

en donde f; es tal que F(f;)(a) = x.
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Se toman X,Y objetosy h: Y — X en C y se demuestra que el diagrama

F(X) 22N Mor (X, A)
J/}—(h) iMor(h,A)
F(Y) 25 Mor(Y, A)

es conmutativo. Sea x € F(X). Entonces
(@(Y) o F(h) () = frn)(a)>
en donde F(fr(n)@))(a) = F(h)(x). Por otra parte,
(Mor(h, A) o ®(X))(x) = fy 0 h.
Se observa, que

F(fz 0 h)(a) = F(h)(F(fz)(a))
= F(h)(2),

y por la unicidad de fr@p)(.), se sigue que fz o h = fr())- En consecuencia el diagrama es con-
mutativo y ® es una transformacién natural.

Finalmente se prueba que ®x : F(X) — Mor(X, A) es una biyeccién. Considerar z,y € F(X).
Si @x(x) = ¢x(y), entonces x = fy(a) = fy(a) =y, por lo tanto ®x es inyectiva.
Por otro lado, si g € Mor(X, A), entonces F(g) € Mor(F(A), F(X)) y como a € F(A), se sigue que
F(g)(a) € F(X). Luego, dx(F(9(a))) = g(gya) ¥ 9 cumple con F(gr(gym)(@) = F(9)(), lo cual
prueba que ®x es biyectiva.

Asi, se concluye que ® es un isomorfismo natural y por consiguiente F ~ Mor(—, A). O

;,Cual es el interés en el objeto universal? Ocurre que el objeto universal funciona como una
especie de espacio de pardmetros: cualquier elemento a € F(A), para cualquier A, puede rastrearse
a través de X y z. En el siguiente ejemplo, se muestra la relevancia de dicho objeto.

Ejemplo 5.1. Este ejemplo puede encontrarse en [2], aqui lo es desarrollado un poco mds. Ademds,
se hace uso de algunos hechos topoldgicos elementales, los cuales pueden consultarse en cualquier
libro de topologia general, por ejemplo, en [7].

Considerar la categoria Top. Se define un funtor contravariante F : Top — Set que manda cada
espacio topoldgico S a la coleccion F(S) de todos sus subespacios abiertos, y dado un morfismo (i.e.
una funcion continua) f: X =Y, se tiene la funcion de conjuntos

F(f) :FY) — F(X)
U — fL).

Se equipa con la topologia mas gruesa al conjunto {0,1} en la cual el subconjunto {0} C {0,1} sea
cerrado (este espacio topoldgico es llamado espacio de Sierpinski); los subconjuntos abiertos en esta
topologia son 0, {1} y {0,1}. Obsérvese que si f : S — {0,1} es continua, entonces f~1({1}) es
abierto. Reciprocamente, si se supone que f~1({1}) es abierto en S, entonces f~1({0,1}), f~1({1})
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y f7Y{0}) son abiertos en S, por lo tanto f es continua. Luego, tenemos la equivalencia: una
funcién S — {0,1} es continua si y solo si f~1({1}) es abierto en S.

Se demuestra que el par ({0,1},{1}) es un objeto universal para este funtor. Considérese un
objeto A enTop yU € F(A) un abierto de A. Se desea probar que existe una unica funcion continua
f:+A—{0,1} con la propiedad de que

F(f) s F{0,1}) — F(A) ()
{1} — U

Se define

— {0,1}

— 1 sixelU
H

f X
x
x 0 six ¢ U,

y se observa que esta funcion cumple 9. ;Es la unica? Si se supone que existe otra funcidn f que
satisface 9. Entonces F(f)({1}) = f~'({1}) = U, que implica f(x) =1 siz € U y f(z) =0 si
x ¢ U. Por consiguiente, f = f.

Por la proposicion 5.1 (y su demostracion), es sabido que el funtor F estd representado por
{0, 1}, con ello se sabe que para todo espacio topoldgico X se tiene la biyeccion F(X) ~ Mor(X, {0,1}),
y es posible concluir que hay tantas funciones continuas X — {0,1} como abiertos en X. La idea
que debe resaltarse es que Mor(X,{0,1}) esta “parametrizando” a los abiertos de X : en primer lu-
gar, se tiene la biyeccion F(X) ~ Mor(X,{0,1}) y ademds, dado un morfismo f € Mor(X,{0,1})

se puede conocer cudl es su abierto correspondiente.

6. Conclusiones

En este trabajo se abordé el Lema de Yoneda. Para ilustrar su insercién y aplicacién en el
contexto de la teoria de categorias, se abordaron varios ejemplos interesantes, que permitieron
ilustrar los conceptos y resultados. De forma precisa se tiene lo siguiente:

= La teoria de categorias se define en términos muy generales, lo cual hace que existan ejemplos
muy variados de éstas.

= Se obtuvieron resultados muy concretos; para lograrlo tuvimos que considerar categorias y
funtores especificos: primero se puso atencién en los funtores que tuvieran como categoria
de llegada a Set. Luego, el interés cambié a aquellos que fueran naturalmente isomorfos a
Mor(, —).

= Se obtuvieron resultados especificos: que Mor(—, A) ~ Mor(—, B) implica que A ~ B, o que
un funtor es representable si y solo si, tiene un objeto universal. Se debe de mencionar que
para demostrar estos dos resultados mencionados, se empled el Lema de Yoneda (o bien, su
versién débil).

= En la demostracién de los resultados, fue posible notar que habian ciertos objetos que jugaban
un papel importante en la demostracién (especialmente, en la demostracién del Lema (débil)
de Yoneda); en los casos particulares se investigd qué informacién era posible obtenerse a
partir de ellos:
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1. En el ejemplo 3.1, el objeto de interés fue R, el cual representa al funtor olvidadizo, y se
observé que hay tantas funciones lineales R — V' como vectores hay en V' (donde V es
un R-espacio vectorial).

2. Posteriormente, en el ejemplo 4.1 la transformacién natural F — F permitia distinguir
entre forma y funcién polinomial. Adem4s, se vio que siempre es posible definir una
funcién de Z[X] en cualquier anillo R, y gracias a esto fue demostrado que el funtor
olvidadizo F esta representado por Z[X].

3. Por 1ltimo, en el ejemplo 5.1 se encontré un objeto universal y se vio de qué mane-
ra (utilizando el funtor de puntos) permitia parametrizar los abiertos de un espacio
topolodgico.

A lo largo de este escrito se ejemplificé como la teoria de categorias proporciona un lenguaje
bastante general pero que permite llegar a lo particular. Uno en el cual se puede expresar hechos
matematicos, resaltar objetos de interés y que permite, a través de resultados propios de la teoria,
obtener informacién de otras dreas de las matematicas.
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