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El presente número del Journal of Basic Sciences está integrado por seis contribuciones 
que, desde distintos campos de las ciencias naturales y matemáticas, ponen de relieve una 
característica fundamental en la investigación contemporánea que es la diversidad de 
enfoques y metodologías aplicadas en la búsqueda de soluciones y respuestas ante 
problemáticas específicas. Aun cuando el contexto y los objetos de estudios son diversos, 
desde las ciencias de la tierra hasta el análisis funcional, la física teórica o la teoría de 
categorías, en todos ellos se comparte un interés común: abundar en la comprensión de 
los fenómenos abordados, mediante herramientas metodológicas rigurosas. 
 
El primer artículo, realizado en el campo volcánico “La Repartición”, situado al noreste de 
San Luis Potosí, se enfoca en el análisis de la distribución de tamaño de cristales y el cálculo 
de los tiempos de residencia de microcristales de plagioclasa en este escenario geológico, 
muy apropiado para el estudio de procesos magmáticos. Con los resultados obtenidos, se 
enriquece la compresión de la evolución textural de las rocas máficas y se subraya la 
importancia de los estudios microestructurales para reconstruir la dinámica interna de los 
sistemas volcánicos. 
 
En la segunda contribución, se pone de manifiesto también el interés por estudiar la 
interacción entre procesos naturales y condiciones locales, ya que se examina la 
composición mineralógica y edafológica de suelos en Huimanguillo y Jalpa de Méndez, 
Tabasco. Mediante estudios de difracción de rayos X y trabajo en campo, se encuentran 
diferencias sustanciales en la mineralogía, las propiedades físicas y la capacidad de 
intercambio iónico de los suelos, revelando así tanto la variabilidad intrínseca de los mismos 
como la influencia de actividades antropogénicas. Con este trabajo, se ofrecen insumos 
valiosos destinados a un manejo sostenible de los suelos en la región. 
 
Las síntesis y propiedades catalíticas del óxido de zinc se estudian en el tercer artículo de 
este número, mediante técnicas analíticas apropiadas se logró la caracterización de este 
compuesto obtenido mediante combustión en estado sólido, además de que se probó su 
actividad para la degradación del 4-nitrofenol en condiciones de fotocatálisis, probándose 
así que puede ser un material promisorio para aplicarse exitosamente en el área de la 
química ambiental.  
 
El cuarto trabajo se incluye en el ámbito de la probabilidad y el análisis, al analizar las 
propiedades fundamentales del kernel de calor de Dirichlet asociado a procesos de Markov 
simétricos, potencialmente discontinuos. Al demostrar una serie de características tales 
como continuidad, simetría y la ecuación de Chapman-Kolmogorov, se fortalece la 
comprensión teórica del fenómeno, además de hacer posible su aplicación en ecuaciones 
semilineales de reacción-difusión no autónomas. De esta forma se entrelazan procesos 
estocásticos con problemas de evolución gobernados por operadores no locales. 
  



 

 
 
 
Por otro lado, se presenta en el quinto artículo una reconstrucción precisa de la deducción 
de Feynman de las ecuaciones de Maxwell. A partir de la segunda ley de Newton y de las 
relaciones de Poisson en un espacio euclídeo, el análisis se extiende a un marco relativista 
mediante cálculos tensoriales en el espacio de Minkowski. Con ello, se abunda en la 
compresión de los supuestos fundamentales de la derivación original, fortaleciendo así la 
formulación pedagógica del problema e integrando el principio de acoplamiento mínimo con 
los desarrollos de Montesinos y Pérez-Lorenzana. 
 
Finalmente, en la sexta contribución de este número, se profundiza en conceptos centrales 
de la teoría de categorías, como son la representabilidad, los objetos universales y el Lema 
de Yoneda. Mediante una serie de ejemplos que abarcan áreas de las matemáticas como 
el álgebra lineal, la topología y la teoría de anillos, se ofrece una ruta clara hacia la 
comprensión de estas nociones, contribuyendo así a una difusión de ideas fundamentales 
que forman parte del pensamiento matemático moderno. 
 
En conjunto, los trabajos incluidos en este número ilustran la riqueza interdisciplinaria de la 
investigación actual y subrayan el valor del rigor científico, desde sus aspectos 
conceptuales hasta los metodológicos, para la generación de conocimiento. Que estas 
aportaciones sirvan de inicio para nuevas dudas e inquietudes, fomentando la interacción 
académica y estimulando el desarrollo de investigaciones futuras. 
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Resumen  
 El Campo Volcánico de La Repartición (CVLR) localizado en la porción noreste del Campo 

Volcánico de San Luis Potosí, presenta una variación en distintos tipos de rocas volcánicas, 
destacandolo como un laboratorio natural ejemplar para análisis petrológicos. Por lo tanto, el presente 
trabajo muestra como objetivo el realizar análisis de distribución de tamaño de cristales (CSD) y 
cálculos de tiempo de residencia en microcristales de plagioclasas de rocas máficas para comprender 
el tiempo de formación y la variación textural de estos minerales en los reservorios magmáticos. Los 
análisis petrográficos revelaron que las muestras analizadas presentan un ensamblaje mineralógico 
de olivino, piroxeno y plagioclasa embebidos en una matriz vítrea. Los análisis CSD exhiben 
pendientes pronunciadas para todas las muestras analizadas, como también, los tiempos de residencia 
indican un aproximado de 3 años, lo cual sugiere un rápido ascenso de los magmas a la superficie en 
niveles superiores de la corteza continental. 

 
Palabras claves: Distribución de tamaño de cristales, tiempo de residencia, petrografía, La 

Repartición, San Luis Potosí, México. 
 
Abstract 
La Repartición Volcanic Field (LRVF), located in the northeastern portion of the San Luis Potosí 

Volcanic Field, presents a variety of volcanic rock types, highlighting it as an exemplary natural 
laboratory for petrological analysis. Therefore, the present work aims to perform crystal size distribution 
(CSD) analyses and residence time calculations on plagioclase microcrystals from mafic rocks to 
understand the formation time and textural variation of these minerals in magmatic reservoirs. 
Petrographic analyses revealed that the analyzed samples present a mineralogical assemblage of olivine, 
pyroxene, and plagioclase embedded in a glassy matrix. CSD analyses exhibit steep slopes for all 
analyzed samples, and residence times indicate an approximate of 3 years, which suggests a rapid ascent 
of magmas to the surface at upper levels of the continental crust. 

 
Keywords: Crystal size distribution, residence time, petrography, La Repartición, San Luis Potosí, 

México. 
Recibido: 25 de agosto de 2025, Aceptado: 17 de noviembre de 2025, Publicado: 12 de diciembre de 2025 
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1. Introducción 

Dentro de la petrología, es bien sabido que la forma y tamaños de los cristales de rocas volcánicas refleja 
las condiciones de enfriamiento y de crecimiento en los sistemas magmáticos [1]. De igual forma, se conoce 
que la mayoría de las rocas volcánicas muestran cristales que varían en tamaños desde micras (µm) hasta 
centímetros (cm), una característica que se explota comúnmente en el análisis de distribución del tamaño 
de cristales para poder inferir las vías y formas de ascenso del magma, la cinética de cristalización, o bien, 
los tiempos de residencia de los cristales en las cámaras o reservorios magmáticos [2].  
La presencia de múltiples poblaciones de cristales en rocas volcánicas sugiere múltiples eventos de 
nucleación y crecimiento bajo condiciones magmáticas (p.ej. subenfriamiento magmático). Un ejemplo de 
esto son las poblaciones de microlitos, los cuales pueden formarse por descompresión durante el ascenso a 
la superficie o por enfriamiento durante el emplazamiento de la lava. Es por esto, que es razonable suponer 
que cada población de cristales de rocas volcánicas desarrollará morfologías cristalinas distintas que 
reflejan condiciones magmáticas cambiantes [3]. 
Por lo tanto, el presente trabajo muestra como objetivo el aplicar técnicas analíticas cuantitativas para la 
comprensión de la formación y variación textural de plagioclasas en rocas volcánicas de composición 
máfica. Para lograrlo se seleccionó rocas máficas pertenecientes al derrame Romerillo del Complejo 
Volcánico La Repartición, San Luis Potosí. El Complejo Volcánico La Repartición compone uno de los 
seis complejos volcánicos del Campo Volcánico de San Luis Potosí (CVSLP; Fig. 1a) el cual se caracteriza 
principalmente por un magmatismo voluminosos de rocas silícicas desarrolladas durante el periodo del 
Eoceno y el Oligoceno [4-8]. Las rocas máficas que componen al Complejo Volcánico La Repartición han 
sido estudiadas de manera escasa [5], por lo que el estudio de la formación, caracterización y procesos 
magmáticos involucrados en la formación de este tipo de rocas sigue siendo un tema de interés dentro de 
las geociencias del área de estudio. 

2. Contexto geológico breve 

El Complejo Volcánico La Repartición (CVLR; Fig. 1b) se localiza en la porción noreste del CVSLP (Fig. 
1a) y se encuentra conformado principalmente por rocas volcánicas de composición félsica (flujos de lava 
y paquetes piroclásticos), como también por rocas volcánicas de composición de máfica e intermedia (flujos 
de lava) las cuales cubren un periodo de tiempo de formación que oscila entre el Oligoceno al Mioceno (~ 
32-20 Ma; [5]).  
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Figura 1. a) Mapa geológico simplificado del Campo Volcánico San Luis Potosí; b) Mapa geológico simplificado 

del Complejo Volcánico La Repartición. 
 
Asimismo, estas estructuras volcánicas se encuentran emplazadas a través de un basamento Cretácico el 
cual se encuentra conformado principalmente por rocas sedimentarias [9,5,10], como también, esta región 
se encuentra afectada por estructuras geológicas del Cenozoico como son: (i) sistemas de fallas normales 
con tendencias este-noreste (E-NE) y noroeste (NW); (ii) estructuras de pliegues con orientaciones E-NE 
relacionadas a la orogenia Laramide [11]. 
 
3. Metodología 

3.1 Análisis petrográfico 
 
Se prepararon láminas delgadas de cinco muestras representativas de la zona para la elaboración del análisis 
modal y cuantitativo. Se elaboró un conteo de aproximadamente 1000 puntos en cada lámina delgada para 
la clasificación modal utilizando un microscopio petrográfico Leica y un contador de puntos semi-
automático de marca PELCON en el Instituto Potosino de Investigaciones Científica y Tecnológicas 
(IPICYT), San Luis Potosí. 
 
3.2 Análisis de distribución de tamaño de cristal 
 
El concepto de distribución del tamaño de cristal (CSD por sus siglas en inglés cristal size distribution) se 
introdujo por primera vez para comprender la dinámica del magma en términos de los procesos de 
cristalización de plagioclasas y para conocer la tasa de crecimiento durante la evolución de rocas 
magmáticas [12-13]. La variación del logaritmo natural de la densidad de población cristalina, es decir, el 
número de cristales por unidad de volumen, en conjunto con el tamaño del cristal (L) proporcionan un 
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patrón lineal en un estado constante del sistema magmático [14]. El diagrama CSD muestra líneas rectas 
que sugieren las condiciones constantes del magma [14]. Se sugiere que un conjunto de líneas rectas a lo 
largo de la misma pendiente, pero con una variación en las intersecciones generadas por la reducción de 
temperatura, modifica la pendiente de la CSD, pero inhibe el mismo valor de la intersección. Una pendiente 
más pronunciada muestra evidencia de fraccionamiento de cristales. Según [14], la CSD curva y cóncava 
ascendente sugiere firmemente el proceso de mezcla de magma. Además, la CSD curva se genera como 
resultado del período progresivo de enfriamiento a través del ascenso y el emplazamiento del magma [15]. 
Por lo tanto, a partir del procesamiento propuesto por [14], se realizó el análisis de imágenes automático de 
las cinco muestras de roca representativas (Muestra LR01, LR05, LR12,LR16,LR21; Tabla 1) de las cuales 
se tomaron tres microfotografías representativas por cada muestra utilizando un microscopio de marca 
LEICA con cámara integrada del Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), 
San Luis Potosí. La adquisición de información para los análisis de CSD fue obtenida a partir del uso del 
software ImageJ (https://imagej.net/ij/), como también, los datos obtenidos se corrigieron, graficaron y se 
realizaron los cálculos adecuados utilizando el software CSDCorrections propuesto por [1]. El 
procesamiento de imágenes se centró en la obtención de longitudes, anchuras y áreas de los microcristales 
de plagioclasa que incorporan a las muestras seleccionadas. A partir de la información obtenida por el 
procesamiento de imágenes y aplicando el uso del software CSDCorrections [1] se obtuvieron las 
regresiones lineales correspondientes para el cálculo de la pendiente (m) e interceptp para cada una de las 
muestras. La obtención de estas regresiones se asocia a la variación del logaritmo natural de la densidad de 
población de cristales (p.ej. el número de cristales por unidad de volumen) con el tamaño de cristal 
brindando así un patrón lineal bajo un estado consisten de sistemas abiertos [1].  

4. Resultados y discusión 

4.1 Análisis petrográfico 
 
Las rocas volcánicas de composición máfica del CVLR exhiben una textura porfirítica con una presencia 
esporádica de vesículas (Fig. 2). Los microlitos observados en las muestras analizadas muestran una 
orientación sub-paralela con una matriz de estilo afanítica (Fig. 2). A su vez, se observa que el ensamblaje 
mineralógico principal se conforma por fenocristales de plagioclasa, los cuales se encuentran de forma 
escasa (~ 0.3 a 0.8 mm de diámetro), a su vez, se observan fenocristales subhedrales a euhedrales de 
clinopiroxeno (Fig. 2) con diámetros aproximados de 0.3 – 0.5 mm, adicionalmente, se presentan en 
microcristales subhedrales (< 0.1 mm) de olivino (Fig. 2).  
La mineralogía presente en estas rocas volcánicas se alinea a los ensamblajes mineralógicos típicos de rocas 
máficas del Campo Volcánico de San Luis Potosí, tanto del sector norte como del sector sur [8]. A partir 
de los resultados geoquímicos y geofísicos presentados por [16], se considera que un sistema magmático 
segmentado es exhibido por debajo del CVLR, dando lugar a características petrográficas (tamaños, formas 
y abundancias de cristales) variadas para un mismo estilo de litología (Fig. 2).  
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Figura 2. Microfotografías de rocas máficas del CVLR. (a-e) Fenocristales de olivino (Ol), clinopiroxenos (Cpx) 

y plagioclasas (Pl) con microcristales de plagioclasa (Pl) embebidos en un matriz vítrea con presencia de 
microcristales opacos esparcidos a lo largo de la matriz.  

4.2 Distribución de tamaño de cristales (CSD) de rocas máficas del CVLR 

El resultado de los análisis de distribución de tamaño de cristales en microcristales (< 0.1 mm) de 
plagioclasa se reporta en la Figura 3. Las rocas máficas del CVLR poseen valores de pendientes que abarcan 
desde -84.5 a -100 (mm-1) e interceptos de 15.52 a 16.52 (mm-4) con valores de R2 0.95 – 0.94 lo cual sugiere 
que las muestras son estadísticamente significativas (valores significativos R2 = > 0.95; [1]). La pendiente 
pronunciada observada en los microcristales de plagioclasas de las rocas máficas del CVLR se relacionan 
con un número de gradiente más alto al de una pendiente suave (Fig. 3). Este tipo de pendiente pronunciada 
corresponde a una rápida tasa de formación de cristales, lo que brinda lugar a microcristales, o cristales 
pequeños [17]. A su vez, estos resultados sugieren que las muestras se relacionan a un estilo eruptivo 
asociado a escorias de depósitos estrombolianos [1]. Este estilo de resultados puede ser observado de igual 
forma en rocas ígneas analizadas por [3], [12] y [13], en donde presentan tasas de cristalización rápidas 
para microcristales, como para fenocristales de plagioclasa, muy similares a las presentes en las muestras 
del presente estudio. 
Por otro lado, para calcular la tasa de residencia de los cristales en el magma correspondiente se realizó el 
cálculo siguiendo la ecuación:  

𝑇𝑟 = $−
1

𝐺 ×𝑀*
31536000/  
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en donde Tr se refiere al tiempo de residencia calculado en años, G es el rango de crecimiento del cristal 
(mm/s; 10-10 - 10-6 mm/s) y m describe a la pendiente de la línea de tendencia de la población de cristales, 
obtenida por el análisis de CSD. Dentro de esta fórmula el valor de G es elegido en base al valor propuesto 
por [18] para cristales de plagioclasas de rocas máficas (G = 10-10 mm/s) mientras que la constante de 
31536000 es el coeficiente de conversión de segundos años. 

 
Figura 3. Gráficas de densidad de población vs tamaño de cristal relacionado a los microcristales de plagioclasa 
de las rocas volcánicas del CVLR. En los gráficos se observa una pendiente pronunciada para la mayoría de los 
microcristales de las rocas, lo cual indica un crecimiento progresivo de los microcristales de plagioclasas, con 
excepción de la muestra LR01, la cual presenta una pequeña tendencia abrupta, en microcristales de tamaño 
<0.02mm lo que marca un cambio en crecimientos brusco al momento de generación de los microcristales 

presentes en la muestra. 

Siguiendo las recomendaciones mencionadas por [19], se consideró que la formación de los microcristales 
de plagioclasa presentes en las rocas máficas del CVLR tuvo lugar en la parte superior del sistema 
magmático del área de estudio. Los cálculos de tiempo de residencia revelan que los microcristales de 
plagioclasa presentes en las rocas máficas del CVLR varía de un tiempo de 3.75 a 3.28 años (Tabla 1), lo 
cual sugiere que la población de microcristales sufrió un subenfriamiento alto [20].  
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Tabla 1. Información del análisis de distribución de tamaño de cristales correspondientes a las rocas 
máficas del CVLR (Inicial LR# indica las iniciales de la zona La Repartición). 

Muestra Pendiente de la línea de 
tendencia 

Intercepto R2 Tiempo de residencia 
(años) 

LR01 -84.5 15.52 0.95 3.75 
LR05 -99.5 16.56 0.94 3.19 
LR12 -98.4 16.03 0.95 3.22 
LR16 -100 16.4 0.94 3.17 
LR21 -96.7 16.13 0.95 3.28 

El sub-enfriamento alto de microcristales en rocas volcánicas, comúnmente se relaciona a procesos de 
cristalización que toman lugar en niveles someros de la corteza continental en un periodo de tiempo corto 
[20], como es el caso que observamos para las rocas máficas del CVLR. Por lo tanto, se puede mencionar 
que el proceso de cristalización de microcristales de plagioclasa en rocas máficas del CVLR tomó lugar en 
niveles someros de la corteza en un periodo corto de tiempo (~3 años) previo a su erupción a la superficie.  

El tiempo de residencia, en conjunto con los resultados de los análisis de distribución de cristales de las 
rocas máficas del CVLR marcan una evidencia de procesos de cristalización fraccionada rápida en conjunto 
con un estancamiento en niveles someros de la corteza continental, esto apoya a lo propuesto por [16] en 
donde, a partir de información aeromagnética y geoquímica, se propone un sistema magmático con 
reservorios someros a niveles de la corteza continental superior, como también, la actividad de procesos 
magmáticos de cristalización fraccionada. A su vez, este estilo de procesos magmáticos que afectan a las 
rocas máficas del CVLR, se ha observado a partir de análisis geoquímicos en complejos volcánicos 
aledaños de la zona de estudio, pertenecientes al Campo Volcánico de San Luis Potosí (p.ej. Complejo 
Volcánico Ventura, Ahualulco, Sierra de San Miguelito, entre otros). Asimismo, realizando una pequeña 
comparación con una zona alejada al contexto del Campo Volcánico de San Luis Potosí, [21] reportan 
tiempos de residencia cercanos a los de las rocas máficas del CVLR para el volcán Vesubio, Italia. Estos 
autores relacionan los tiempos de residencia (< 6 años; [21]) ha procesos de cristalización fraccionada 
rápida, como también, a un ascenso magmático parcialmente lento a través de la corteza continental. Por lo 
tanto, esta primera aproximación da lugar a futuras investigaciones relacionadas a los procesos de 
cristalización que afectan la zona, como también, la aplicación de distintas técnicas analíticas como lo puede 
ser el uso de la microsonda electrónica.  

5. Conclusiones 

Las rocas máficas del CVLR se caracterizan por presentar texturas porfiríticas y un ensamblaje 
mineralógico principal de olivino, piroxeno y plagioclasas. A su vez, la matriz de estas rocas es vítrea con 
una alta presencia de microcristales de plagioclasas. A partir de los resultados obtenidos se considera que 
el tiempo estimado de residencia para los microcristales de plagioclasas presentes en la matriz de las rocas 
volcánicas cubre aproximadamente tres años. Este periodo de tiempo sugiere un proceso de sub-
enfriamiento alto y rápido en niveles someros de la corteza continental. Asimismo, las pendientes 
pronunciadas observadas en las rocas volcánicas confirman el tiempo de residencia rápido, lo cual conduce 
a la generación de microcristales.  
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Resumen  

Este estudio aborda la caracterización mineralógica y edafológica de suelos provenientes de los 
municipios de Huimanguillo y Jalpa de Méndez, en Tabasco, México. A través del análisis de difracción 
de rayos X (DRX) y estudios edafológicos, se identificaron variaciones en la composición mineral y en la 
capacidad de intercambio catiónico (CIC) entre ambos sitios. Los suelos de Jalpa de Méndez mostraron una 
mayor diversidad mineralógica, mientras que los de Huimanguillo presentaron señales de alteración por 
actividad antropogénica. Las propiedades físicas como textura, color y humedad, así como las condiciones 
biológicas y presencia de materia orgánica, también variaron entre los perfiles analizados. Los resultados 
obtenidos aportan información relevante para comprender el potencial productivo de estos suelos y 
establecer estrategias adecuadas de conservación y manejo sostenible en la región. 

Palabras claves: Composición mineralógica, Suelos, Difracción de rayos X, Capacidad de 
intercambio catiónico, Fertilidad del suelo. 

Abstract 

This study addresses the mineralogical and edaphological characterization of soils from the 
municipalities of Huimanguillo and Jalpa de Méndez, in Tabasco, Mexico. Through X-ray diffraction 
(XRD) analysis and soil profile descriptions, variations were identified in mineral composition and cation 
exchange capacity (CEC) between the two sites. The soils from Jalpa de Méndez showed greater mineral 
diversity, while those from Huimanguillo presented signs of alteration due to anthropogenic activity. 
Physical properties such as texture, color, and moisture, along with biological activity and organic matter 
content, also varied among the analyzed profiles. The results provide valuable information for 
understanding the productive potential of these soils and for developing appropriate strategies for their 
conservation and sustainable management. 

Keywords: Mineralogical composition, Soils, X-ray diffraction, Cation exchange capacity, Soil 
fertility. 

Recibido: 26 de marzo de 2025, Aceptado: 19 de agosto de 2025, Publicado: 12 de diciembre de 2025 
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1. Introducción 

El estado de Tabasco presenta una diversidad edafológica importante, con suelos que han sido afectados 
por actividades antropogénicas e industriales (Palma & Rincon-Ramirez, 2007). La creciente presión de la 
urbanización, la expansión agrícola y la explotación petrolera han modificado significativamente las 
características edáficas, lo que ha generado una disminución en la calidad de los suelos y una mayor 
susceptibilidad a la erosión y degradación (Pérez-López, 2013). Investigaciones previas han demostrado 
que la composición mineral de un suelo influye directamente en sus propiedades físicas y químicas, 
afectando su capacidad de retención de agua, intercambio de nutrientes y resistencia a la erosión (Espejel-
García et al., 2015) La interacción de estos minerales con contaminantes orgánicos e inorgánicos es un 
factor crucial para evaluar su degradación y potencial de recuperación (Alberto & Abril, 2018). 
La edafología, rama de la ciencia que estudia los suelos en su ambiente natural, permite comprender los procesos de 
formación, estructura y composición de estos, proporcionando bases científicas para su conservación y uso sostenible 
(Zavala-Cruz et al., 2017). En este contexto, el análisis mineralógico se ha convertido en una herramienta clave en 
estudios de geoquímica y manejo del suelo. Este tipo de análisis permite determinar la composición de los suelos y su 
impacto en la fertilidad y capacidad de retención de nutrientes. Factores como la presencia de minerales arcillosos, la 
porosidad y la capacidad de intercambio catiónico influyen directamente en el desarrollo de la vegetación y la 
productividad agrícola. (David J. Palma-López et al., 2007). 
Los suelos predominantes en el estado de Tabasco son clasificados como vertisoles los cuales están constituidos por 
sedimentos aluviales del Cuaternario Reciente (0.0117 Ma) y presentan solamente horizontes superficial (A) y 
material parental (C), dentro de esta clasificación se encuentran nuestras zonas de estudio en Jalpa de Méndez y 
Huimanguillo (Palma & Rincon-Ramirez, 2007), se caracterizan por una intensa meteorización química debido a las 
altas temperaturas y precipitaciones, lo que favorece la lixiviación de nutrientes esenciales y la acumulación de 
minerales secundarios (Espejel-García et al., 2015). Además, la fertilidad del suelo está influenciada por la cantidad 
y tipo de arcillas presentes. Suelos con alto contenido de esmécticas y vermiculitas presentan una mayor capacidad de 
retención de nutrientes, mientras que aquellos dominados por cuarzo y arenas suelen ser menos fértiles y más 
propensos a la erosión (Martínez-Rodríguez et al., 2021). La presencia de óxidos de hierro y aluminio también puede 
afectar la disponibilidad de fósforo, un elemento esencial para el crecimiento de las plantas (Cejudo & Herrera-
Caamal, 2019). 
En estudios recientes, se ha encontrado que los suelos de regiones tropicales, como Tabasco, presentan un proceso 
acelerado de lixiviación debido a la alta precipitación, lo que reduce la disponibilidad de nutrientes esenciales 
(Quintero Ramirez et al., 2017). La influencia de actividades humanas como la deforestación y la expansión agrícola 
ha intensificado la pérdida de nutrientes y la compactación del suelo, afectando su estructura y porosidad (Palma & 
Rincon-Ramirez, 2007). Además, la contaminación por hidrocarburos y metales pesados ha modificado la 
composición química de los suelos, lo que puede generar efectos adversos en los ecosistemas y en la producción 
agrícola (González-Ruiz et al., 2015). Este estudio se enfoca en el estudio de los suelos de Huimanguillo y Jalpa de 
Méndez mediante su mineralogía. La composición mineralógica permitirá evaluar la influencia de estos minerales en 
la calidad del suelo, proporcionando información clave para el diseño de estrategias de manejo y conservación 
sostenible. 
 
2. Metodología 

2.1 Recolección de muestras 

El estudio se realizó mediante la recolección de muestras de suelo en los municipios Roberto Madrazo 
Pintado, Huimanguillo (UTM 15 Q 434925.00, 1976676.00) y en Chacalapa Jalpa de Méndez, Tabasco 
(UTM 15Q 488505.00, 2006871.00), seleccionando tres horizontes en cada sitio de muestreo. Se 
establecieron protocolos de muestreo siguiendo las recomendaciones de la Norma Oficial Mexicana NOM-
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021-SEMARNAT-2000 (Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT], 2000)para 
garantizar representatividad y evitar contaminación cruzada. 

2.2 Descripción de perfiles 
 
La descripción del perfil del suelo se realizó conforme a los lineamientos establecidos por la norma NMX-
AA-132-SCFI-2006, la cual proporciona una guía estandarizada para la caracterización morfológica de los 
horizontes del suelo en campo. 

 
2.3 Tratamiento de las muestras  
Las muestras fueron secadas a 60°C en una estufa de laboratorio, para su posterior disgregación y tamizado 
con una malla de 2 mm para eliminar residuos gruesos y obtener una granulometría uniforme (Palma-López 
et al., 2020).  

2.4 Caracterización textural 

Se utilizó el método del hidrómetro de Bouyoucos, midiendo la velocidad de sedimentación de partículas 
suspendidas determinando así las proporciones de arena, limo y arcilla en el suelo (Gabriels & Lobo, 2006). 

2.5 Análisis mineralógico 

Se realizó mediante difracción de rayos X (DRX) en un difractómetro de polvo modelo Bruker D8 Advance 
con radiación CuKα, operando a 40 kV y 30 mA. Se obtuvieron difractogramas en un intervalo de 5° a 70° 
2θ, con un paso de 0.02° y un tiempo de conteo de 1s por paso (González-Ruiz et al., 2015). La 
identificación de fases minerales se realizó utilizando la base de datos del International Centre for 
Diffraction Data (ICDD). 

2.6 Nutrientes esenciales 

El análisis de calcio, magnesio, potasio y sodio permite evaluar la capacidad de intercambio catiónico (CIC) 
del suelo, indicador clave de fertilidad. La CIC se determinó utilizando el método de acetato de amonio a 
pH 7.0, con medición de cationes intercambiables mediante espectrometría de absorción atómica (Martínez-
Rodríguez et al., 2021). 

3. Resultados  

3.1 Perfiles edafológicos 

El análisis de los siguientes perfiles edafológicos de las zonas de estudio permitió conocer el desarrollo y 
propiedades edáficas de los horizontes como se presenta a continuación (Palma & Rincon-Ramirez, 2007). 
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Tabla 1. Descripción del perfil de Chacalapa, Jalpa de Méndez, Tabasco 

PERFIL (UTM 15 Q 488505.00, 2006871.00) 

 

Lugar de 
muestreo Chacalapa Jalpa de Méndez, Tabasco 

Responsable  

Fecha  Clima Cálido - 
húmedo 

Profundidad H1 40 cm H2 40 cm H3 40cm 
Longitud (cm) 0 - 40 40 – 80 80 – 120 
Humedad Baja Media Media 

Matriz de suelo Arenoso 
franco 

Arenoso 
franco 

Arenoso 
franco 

Color Munsell 10 YR-4/1 10 YR – 
5/1 10 YR – 6/8 

Textura Franco-
arenoso 

Franco-
arenoso 

Franco-
arenoso 

Agregados Con 
presencia 

Sin 
presencia Sin presencia 

Raíces Largas y 
abundantes 

Medianas, 
delgadas 
(escasas) 

Finas 
(escasas) 

Biota Con 
presencia 

Con escasa 
presencia 

Con escasa 
presencia 

Materia 
orgánica Raíces Raíces Raíces 

Material 
antropogénico 

Sin 
presencia 

Sin 
presencia Sin presencia 

Moteas Sin 
presencia 

Sin 
presencia Sin presencia 

Grietas Grandes y 
profundas 

Anchas y 
delgadas Horizontales 

Textura 
%A 83.88 10.68 5.44 
%R 77.88 10.68 11.44 
%L 59.88 14.68 25.44 

CIC (cmol/kg) 0.370 0.502 0.454 

Observaciones 

En todo el perfil se encontraron raíces y 
grietas, en la zona de estudio se encontró 

a su alrededor árboles de tinto, pasto, 
aves, insectos y ganado vacuno. 

  
El perfil anterior Tabla 2. Perfil de Chacalapa, Jalpa de Méndez, Tabasco) se divide en tres horizontes de 
40 cm, dando un total de 120 cm de profundidad. Todos los horizontes presentan una textura franco-arenosa 
lo que señala una capacidad moderada para retener agua y una adecuada ventilación. Aunque la humedad 
varía con la profundidad se observa un menor contenido de humedad en la capa superficial (H1, 0-40 cm) 
en contraste con los horizontes más profundos (H2 y H3), lo que indica un incremento en la evaporación 
en la zona superficial. 
La escala de Munsell determina el color del terreno, que oscila entre 10 YR-4/1 en la superficie 
considerando una alta presencia de materia orgánica mezclada con arcilla, posible reducción temporal por 
saturación parcial de agua y poca aireación superficial por el alto contenido de arcillas expansivas, las 
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cuales causan fisuras en seco y sellado en húmedo. El horizonte más profundo presenta una coloración 10 
YR-6/8 indicando una mayor oxidación de hierro por mejor drenaje interno, se tiene menor influencia de 
materia orgánica, la coloración brillante puede deberse al ascenso capilar y redistribución de sales o 
minerales de hierro durante los ciclos de contracción-hinchamiento. La abundancia de raíces en el horizonte 
superficial es notable, pero disminuye a medida que aumenta la profundidad, rasgo de un perfil con una 
mayor actividad biológica en las capas superiores. La biota sigue el mismo patrón, mostrando una mayor 
presencia en el horizonte superficial y disminuyendo en los niveles inferiores. El primer horizonte (H1) 
presenta en su estructura agregados en comparación a los horizontes más profundos. Por otro lado, las 
grietas se encuentran presente a lo largo del perfil variando en su morfología. La variación del CIC entre 
0.370 y 0.502 cmol/kg sugiere una moderada disponibilidad de fertilidad en el suelo. 
El ambiente del lugar de estudio se distingue por la existencia de árboles de tinto, pastizal, aves, insectos y 
ganado vacuno, indicando una interacción activa entre la fauna y el suelo. No se detectaron elementos 
antropogénicos ni movidos en el perfil, lo que señala que el terreno no ha sufrido modificaciones 
significativas debido a las acciones humanas. 
Tomando en cuenta la información obtenida, el perfil del suelo analizado muestra rasgos propios de un 
suelo franco-arenoso con una capacidad moderada de retención de humedad y una actividad biológica 
concentrada en su superficie. El cambio de tonalidad, la existencia de raíces y biota, junto con la estructura 
del terreno, indican un entorno ecológico que promueve el crecimiento de la vegetación autóctona y la 
interacción con la fauna. Investigaciones adicionales podrían enfocarse en valorar la fertilidad del terreno 
y su posible aplicación en tareas agropecuarias o de preservacion del medio ambiente. 
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Tabla 3. Descripción de perfil de Roberto Madrazo Pintado Huimanguillo, Tabasco. 

PERFIL (UTM 15 Q 434925.00, 1976676.00) 

 

Lugar de 
muestreo 

Roberto Madrazo Pintado, 
Huimanguillo, Tabasco 

Responsable  

Fecha  Clima Cálido – 
húmedo 

Profundidad H1 30 cm H2 20 cm H3 26 cm 
Longitud (cm) 0 – 30 30 – 50 30 – 56 
Humedad Baja Baja Media 

Matriz de suelo Limoso 
arenoso 

Limoso 
arenoso 

Limoso 
arenoso 

Color Munsell 7.5 YR 
3/1 

7.5 YR 
6/8 7.5 YR 8/6 

Textura Areno - 
limoso 

Areno – 
limoso Areno – limoso 

Agregados Grava Sin 
presencia 

Con presencia 
con alto grado 

de 
compactación 

Raíces Delgadas Sin 
presencia Sin presencia 

Biota Sin 
presencia 

Sin 
presencia Sin presencia 

Materia 
orgánica 

Con 
presencia 

Sin 
presencia Con presencia 

Material 
antropogénico 

Con 
presencia 

Con 
presencia Sin presencia 

Moteas Con 
presencia 

Con 
presencia 
naranja 

Con presencia 
naranja 

Grietas  Sin 
presencia 

Sin 
presencia Sin presencia 

Textura 
%A 78.46 3.96 17.58 
%R 67.88 0.11 32.02 
%L 63.18 0.37 36.46 

CIC (cmol/kg) 25.0 25.0 25.0 

Observaciones 

En todo el perfil se observó un suelo 
pegajoso con una porosidad fina, a sus 
alrededores poca vegetación, ganado y 

pasto humidicola. 

El perfil anterior (Tabla 2) se divide en tres horizontes con una profundidad total de 56 cm de espesor, 
perfil el cual es de un clima cálido-húmedo.  
La textura sugiere ser un suelo areno-limoso a lo largo del perfil lo que indica poca estabilidad en el suelo. 
La humedad se observa baja en los primeros dos horizontes y aumenta en el tercero, por lo cual se sugiere 
mayor retención de agua a profundidad.  
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Respecto a la escala de Munsell el primer horizonte es de color 7.5 YR 3/1, el segundo 7.5 YR 6/8 y el 
tercero 7.5 YR 8/6. El cambio de color respecto a la profundidad podría estar vinculada con la reducción 
de la materia orgánica y la existencia de moteados de color naranja en los horizontes profundos, que señalan 
procesos de oxidación o variaciones en la saturación del agua. 
La estructura del suelo varía en cada horizonte, en el H1 existe presencia de grava, por otro lado, en el H3 
se presenta un alto grado de compactación lo que limita la infiltración del agua. Por la ausencia de grietas 
se ve influenciada la permeabilidad del suelo. 
Se encontró presencia de raíces delgadas en el H1, sin embargo, no hubo presencia de macroorganismos. 
Se hace énfasis en la presencia de material antropogénico en el horizonte uno y dos, lo que sugiere actividad 
humana. Estos factores junto con la compactación y baja porosidad afectan al suelo a retener la vegetación. 
El CIC es alto en todos los horizontes, lo que indica un suelo con alta capacidad para retener nutrientes, 
pero la baja porosidad y compactación limitan qué estos nutrientes lleguen a las raíces de una forma más 
efectiva. 
Tomando en cuenta los diferentes factores analizados del perfil del suelo de Huimanguillo, se tienen 
características que influyen en el uso del suelo y su capacidad para el crecimiento y desarrollo de la 
vegetación en él. Debido a la presencia de material antropogénico y moteas se tienen procesos de oxidación 
que afectan el suelo a un largo plazo. La compactación y porosidad podría mejorarse implementando 
técnicas garantizando un mejor uso del suelo. 

3.2 Difracción de Rayos X 
 
Los difractogramas obtenidos del análisis de DRX fueron comparados con la base de datos PDF-2 del ICDD 
para identificar las fases mineralógicas presentes en los suelos de estudio. Los resultados mostraron la 
presencia predominante de Cuarzo (PDF 01-070-7344), Moscovita (PDF 04-012-1956), Albita (PDF 01-
072-8434): 
Como se observa en la figura 1; se considera que la presencia de una mayor variedad de minerales en el 
suelo de Jalpa de Méndez es debido a un mejor manejo del suelo, lo que refleja la variedad de minerales 
que se encuentra en este. 
Por el contrario, en el suelo de Huimanguillo la presencia predominante de la señal de cuarzo y una mínima 
variedad de otras señales da a entender que este suelo se ha visto afectado por la actividad antropogénica 
considerablemente al punto de no encontrar señales de otros minerales debido a que estos han sido 
afectados, por lo que se tendrá que realizar una remediación de este suelo 
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Figura 1. Difractograma de los suelos muestreados 

Cartas cristalográficas: Cuarzo (Q) PDF 01-070-7344, Moscovita (M) PDF 04-012-1956, Albita (Al) PDF 01-072-
8434. 

4. Conclusiones 

Este estudio confirma que los suelos de Tabasco presentan diferencias mineralógicas y edafológicas. Los 
suelos de Huimanguillo tienen menor retención de nutrientes debido a su composición y estructura, estos 
son ácidos con bajos niveles de fertilidad nativa con un lento drenaje interno, además siendo afectado por 
actividades agrícolas, correspondiendo con lo mencionado por (Palma-López, 2007). Mientras que los 
suelos de Jalpa de Méndez muestran una mayor diversidad mineralógica, pero con menor capacidad de 
retención de nutrientes, problemas de anegamiento y falta de aireación (Palma-López, 2007). Estos 
hallazgos son relevantes para la gestión del uso del suelo en la región y pueden contribuir a estrategias de 
conservación y rehabilitación. 
Además, se resalta la importancia de continuar con estudios geoespaciales para identificar patrones de 
distribución mineralógica y evaluar su impacto en la productividad agrícola y forestal. La incorporación de 
técnicas avanzadas como la espectroscopía y análisis isotópico complementaría los resultados obtenidos en 
este estudio, proporcionando una visión más amplia sobre la evolución del suelo en Tabasco. La adopción 
de estrategias de remediación basadas en estudios mineralógicos permitirá una gestión sostenible del suelo, 
contribuyendo a la seguridad alimentaria y la protección del medio ambiente. 
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Resumen  
Este estudio presenta la síntesis y caracterización del óxido de zinc (ZnO) mediante combustión 

en estado sólido, y su aplicación en la fotodegradación del 4-nitrofenol (4-NP). El ZnO obtenido 
mostró una estructura cristalina hexagonal tipo wurtzita. La espectroscopía UV-Vis reveló un band 
gap de 3.31 eV y un área superficial específica de 0.63 m²/g. Este oxido de zinc presento actividad 
fotocatalítica en la degradación de 4-Nitrofenol (4-NP). Estos resultados demuestran que la 
combustión en estado sólido es un método eficaz para producir ZnO con propiedades óptimas para 
aplicaciones ambientales, sin necesidad de agentes químicos adicionales. 

 
Palabras claves: ZnO, Fotocatálisis, 4-Nitrofenol, Combustión en estado sólido. 
 
Abstract 
This study presents the synthesis and characterization of zinc oxide (ZnO) through solid-state 

combustion and its application in the photodegradation of 4-nitrophenol (4-NP). The obtained ZnO 
exhibited a hexagonal wurtzite crystal structure. UV-Vis spectroscopy revealed a band gap of 3.31 
eV and a specific surface area of 0.63 m²/g. This zinc oxide demonstrated photocatalytic activity in 
the degradation of 4-nitrophenol (4-NP). These results show that solid-state combustion is an 
effective method for producing ZnO with optimal properties for environmental applications, without 
the need for additional chemical agents. 

 
Keywords: ZnO, Photocatalysis, 4-Nitrophenol, Solid-estate combustion 
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1. Introducción 

El óxido de zinc (ZnO) es un material semiconductor de gran interés debido a sus propiedades únicas, como 
su amplia banda prohibida (~3.37 eV), y sus diversas aplicaciones en campos como la fotocatálisis, sensores 
[1], [2], dispositivos optoelectrónicos y materiales antimicrobianos [3], [4]. La morfología y las propiedades 
estructurales del ZnO juegan un papel crucial en su rendimiento en aplicaciones específicas, por lo que la 
síntesis controlada de ZnO con características morfológicas deseadas ha sido objeto de numerosos estudios 
científicos [5]. Diversos métodos de síntesis, tales como la precipitación química, sol-gel, hidrotermal y 
deposición por vapor químico, han sido empleados para producir ZnO con variadas morfologías, como 
nanorods, nanoflowers, nanospheres y nanosheets [6], [7], [8]. Estas morfologías pueden influir 
significativamente en las propiedades ópticas, electrónicas y catalíticas del ZnO. La síntesis de ZnO con 
morfologías específicas, como nanorods y nanoplates, puede optimizar sus propiedades catalíticas. Las 
estructuras jerárquicas tridimensionales del ZnO han mostrado un rendimiento mejorado en la producción 
de hidrógeno debido a la mayor área superficial y la mejor separación de cargas [9]. El óxido de zinc (ZnO) 
ofrece ventajas significativas sobre el óxido de titanio (TiO₂) en aplicaciones fotocatalíticas debido a su 
mayor movilidad electrónica y menor tasa de recombinación de pares electrón-hueco. El ZnO presenta una 
mayor eficiencia en la absorción de luz UV y una mejor capacidad de separación de cargas, lo que mejora 
la eficiencia fotocatalítica [10], [6]. Además, la facilidad de dopaje y la capacidad de formar diversas 
morfologías nanoscópicas hacen que ZnO sea más versátil y eficiente en la degradación de contaminantes 
y la producción de hidrógeno [11]. Las estructuras jerárquicas del ZnO, como nanoflowers y nanorods, han 
demostrado ser altamente efectivas en la fotodegradación de contaminantes, incluyendo tintes y compuestos 
orgánicos volátiles. Estas morfologías ofrecen una mayor área superficial y una mejor dispersión de la luz, 
mejorando la actividad fotocatalítica [12]. Estudios han demostrado que los nanorods y nanosheets son 
efectivos en la degradación del 4-nitrofenol, un contaminante orgánico común. Estas estructuras permiten 
una mejor interacción con el contaminante y una mayor generación de especies reactivas de oxígeno [13]. 
La síntesis del ZnO con estructuras jerárquicas ha mostrado una eficiencia mejorada en la fotodegradación 
de 4-nitrofenol, atribuido a la alta área superficial y la óptima exposición de los sitios catalíticos [14]. En 
este estudio, presentamos un análisis de la morfología y de las propiedades fisicoquímicas del ZnO obtenido 
mediante nuestro método de síntesis, “Combustión en estado sólido”, y evaluamos la actividad catalítica en 
la fotodegradación del 4-Nitrofenol. 
 
2. Metodología Experimental 

2.1 Síntesis del oxido de zinc 

Se utilizo el reactivo nitrato de zinc, el cual se disolvió en 100 mL de agua la cantidad necesaria para obtener 
1 gramo de óxido de zinc. Se mantuvo en agitación por 12 horas. Posteriormente se recristalizo en nitrato 
de zinc extrayendo el disolvente por evaporación lenta a 60 °C por 24 h. El producto obtenido fue calcinado 
con una rampa de 2 °C/min hasta alcanzar los 500 °C y se mantuvo a esa temperatura por 4 h. Esta 
metodología de síntesis se le ha denominado combustión en estado sólido. 

2.2 Difracción de rayos X 

El análisis de difracción de rayos X se utilizó para determinar la composición de las fases del polvo. La 
difracción de rayos X (XRD) se realizó utilizando un difractómetro Bruker D2 PHASER con una fuente de 
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radiación Co Kα (λ = 0,179 nm) durante un tiempo de análisis de 660 segundos. El análisis se llevó a cabo 
en el rango de 20º a 80º. La base de datos JADE 6 se utilizó para completar la identificación de las fases. 

2.3 Espectroscopía de Reflectancia Difusa UV-Vis (DRS UV-Vis) 

El espectro de reflectancia difusa UV-Vis se realizó en un espectrofotómetro Varian Cary 300, en el rango 
de 800 a 200 nm, equipado con una esfera integradora. Se utilizó BaSO4 con una reflectividad del 100% 
como referencia. La energía de band gap (Eg) de la muestra se estimó a partir de los espectros de absorción 
UV teniendo en cuenta la Ecuación 1. 

 

∝ (𝐸) ∝ %𝐸 − 𝐸!'
"/$                                                      Ec. 1 

Donde ∝( E) es el coeficiente de absorción para un fotón de energía E, y m=4 para una transición indirecta 
entre bandas. 

2.4 Adsorción-Desorción de Nitrógeno 
 
La determinación del área específica, diámetro y volumen de poro de los catalizadores se llevó a cabo 
mediante la técnica de fisisorción de N2. Se realizó en un equipo de medición de área superficial, 
MICROMERITICS TRISTAR 3020 II a 77 K (-196 °C). Para eliminar impurezas, se pesó una muestra de 
0.1 g y se desgasificó durante 3 horas a 300 °C. Los datos se analizaron utilizando el método BET 
(Brunauer, Emmet y Teller) y la distribución de poros se determinó mediante DFT. 

2.5 Prueba fotocatalítica 
 
Las pruebas de degradación fotocatalítica se llevaron a cabo en un reactor fotoquímico provisto de 
irradiación de luz UV (λ = 365 nm) utilizando una lámpara de mercurio (25 W). El fotocatalizador (0.1 g/L) 
se dispersó en 200 mL de una solución acuosa de 4-nitrofenol (4-NP) (15 ppm) a pH natural. Como fuente 
de oxígeno, se proporcionó un flujo de aire (3.2 L/min) para obtener 8.4 mg/L de oxígeno disuelto. Antes 
de encender la lámpara, la suspensión se agitó continuamente a 700 rpm durante 60 minutos en la oscuridad 
para asegurar el establecimiento de un equilibrio de adsorción-desorción entre el fotocatalizador y el 
contaminante. El sistema se mantuvo con agua circulante a temperatura ambiente y confinado en una caja 
oscura con protección contra luz UV. Aproximadamente 3 mL de la suspensión fueron muestreados y 
filtrados (nylon, 0.45 µm) para determinar la concentración residual de 4-NP mediante un 
espectrofotómetro UV-Vis (Varian, Cary 300). A partir de los resultados obtenidos, se calculó el porcentaje 
de degradación. Para determinar los porcentajes de degradación se utilizó la Ecuación 2. 

𝑥(%) = ["#$°]'["#$]
["#$°]

                                                             Ec. 2 

Donde [4NP°] (ppm) es la concentración cuando se enciende la luz para iniciar el proceso de 
fotodegradación y [A] (ppm) es la concentración después de 6 horas de irradiación. 
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3. Resultados y Discusión 

El espectro UV-Vis del óxido de zinc (ZnO) sintetizado muestra una absorción en el rango de 300-400 nm, 
con un borde de absorción alrededor de 375 nm, véase Figura 1. Este comportamiento es típico del ZnO y 
corresponde a su transición de banda prohibida (band gap). Se calculo la energía del band gap y el valor es 
aproximadamente 3.31 eV. La fuerte absorción en el rango UV indica que el material sintetizado tiene una 
estructura adecuada y está libre de contaminantes que puedan alterar sus propiedades ópticas. Esto es 
confirmado en literatura por los valores similares de band gap para ZnO puro, alrededor de 3.26 eV y 3.3 
eV, utilizando espectroscopía UV-Vis [15]. Estos resultados sugieren que el método de combustión en 
estado sólido es eficaz para la síntesis del ZnO, produciendo materiales de alta pureza con propiedades 
ópticas coherentes con las reportadas en la literatura científica [16]. 

 
Figura 1. Espectro de absorción del oxido de zinc. 

El patrón de difracción de rayos X (XRD) de la muestra de ZnO muestra varias señales en 2θ ≈ 31.8°, 34.4°, 
36.2°, 47.5°, 56.6°, 62.8°, 66.3°, 67.9° y 69.1°, véase Figura 2. Estos picos corresponden a los planos 
cristalinos (100), (002), (101), (102), (110), (103), (200), (112) y (201) del ZnO con estructura wurtzita, 
respectivamente; véase Figura 2. La presencia de estas señales confirma que la muestra de ZnO tiene una 
estructura cristalina hexagonal tipo wurtzita. Este resultado es consistente con los datos de la carta de 
referencia JCPDS No. 01-079-0205 para ZnO. 
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Figura 2. Difracción de rayos x del Oxido de Zinc. 

 
La isoterma de adsorción-desorción de nitrógeno proporciona información sobre las propiedades texturales 
del material, como el área superficial específica, el volumen de poros y la distribución de tamaño de poros. 
Los resultados de adsorción-desorción isotérmica de la muestra de ZnO muestra en la Figura 3. La isoterma 
del ZnO se asemeja a una isoterma tipo IV según la clasificación de la IUPAC. Este tipo de isoterma es 
característico de materiales mesoporosos, que presentan poros con tamaños en el rango de 2 a 50 nm [17]. 
La adsorción se incrementa a medida que la presión relativa se aproxima a 1, presentando un incremento 
abrupto el cual es asociado a la condensación capilar en mesoporos. En relación con el bucle de histéresis 
parece similar al tipo H2, que está asociado con materiales que tienen poros de botella de tinta o sistemas 
de poros desordenados. Esta histéresis se caracteriza por una rama de desorción más inclinada que la de 
adsorción. La distribución de tamaños de poro obtenida mediante DFT confirma que el material tiene una 
estructura porosa compleja, con una combinación de mesoporos pequeños (2-5 nm) y medianos a grandes 
(10-15 nm). Esto es consistente con la isoterma de adsorción-desorción que mostró un bucle de histéresis 
H2. La muestra de ZnO presenta un área superficial específica de 0.63 m²/g. Aunque este valor es bajo, 
sigue siendo suficiente para proporcionar una superficie activa. 
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Figura 3. Proceso de adsorción-desorción de nitrógeno (A) y distribución de tamaño de poro (B). 

La Figura 4 presenta la degradación del 4-nitrofenol (4-NP) normalizada en función del tiempo. La zona en 
gris representa la etapa de equilibrio en oscuridad. Durante la etapa de equilibrio, la concentración de 4-NP 
disminuye ligeramente antes de la irradiación UV. Este fenómeno se debe a la adsorción del 4-NP en la 
superficie del ZnO. La adsorción previa del 4-NP en la oscuridad asegura que una fracción significativa del 
contaminante esté disponible en la superficie del ZnO cuando comience la irradiación UV. Una vez iniciada 
la irradiación UV, se observa una disminución significativa y continua de la concentración de 4-NP. El ZnO 
genera pares electrón-hueco. Estos electrones y huecos pueden reaccionar con las moléculas de agua y 
oxígeno adsorbidas en la superficie del ZnO, generando especies reactivas de oxígeno (ERO) como 
radicales hidroxilos [18]. La alta cristalinidad del ZnO, proporciona sitios activos que mejoran la eficiencia 
fotocatalítica. Estos defectos actúan como centros de captura para los electrones y huecos, reduciendo la 
recombinación y aumentando la generación de ERO [19]. 
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Figura 4. Concentración normalizada del 4-Nitrofenol en función del tiempo. 

4. Conclusiones 

El método de Combustión en Estado Sólido para la síntesis de ZnO ha demostrado ser una técnica efectiva 
para producir materiales con propiedades ópticas, estructurales y catalíticas deseables. Las 
caracterizaciones realizadas confirman que el ZnO sintetizado presenta una alta cristalinidad, defectos 
estructurales controlados, una adecuada área superficial específica y una notable eficiencia fotocatalítica en 
la degradación del 4-NP. Estos resultados sugieren que este método de síntesis es una alternativa factible y 
eficiente para la producción de fotocatalizadores basados en ZnO, libres de agentes químicos que puedan 
interferir o influenciar las propiedades del material. 
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Resumen
En este art́ıculo de difusión se demuestran algunas propiedades básicas del kernel de calor de
Dirichlet. En teoŕıa de probabilidad este objeto matemático es la densidad de transición de un pro-
ceso de Markov matado. En este trabajo se consideran procesos fuertes de Markov simétricos que
podŕıan ser discontinuos. Entre las propiedades elementales probadas se encuentran: la continuidad,
la simetŕıa y la ecuación de Chapman-Kolmogorov. Se presenta también una aplicación importante
a la teoŕıa de ecuaciones semilineales de tipo reacción-difusión no autónomas con condiciones de
frontera de Dirichlet. La difusión en este caso es el generador del proceso de Markov asociado, el
cual se conoce que podŕıa ser un operador integro-diferencial no local.

Palabras claves: Kernel de calor de Dirichlet, Proceso de Markov fuerte simétrico, densidad de
transición de Dirichlet, tiempo de salida, proceso matado, solución mild, explosión.

Abstract
In this diffusion article some basic properties of the Dirichlet heat kernel are demonstrated. In pro-
bability theory this mathematical object is the transition density of a killed Markov process. In this
work, symmetric strong Markov processes that could be discontinuous are considered. Among the
basic properties demonstrated are: continuity, symmetry, and the Chapman-Kolmogorov equation.
An important application to the theory of non-autonomous semilinear reaction-diffusion equations
with Dirichlet boundary conditions is also presented. Diffusion in this case is the generator of the
associated Markov process, which is known to be a non-local integro-differential operator.

Keywords: Dirichlet heat kernel, symmetric strong Markov process, Dirichlet transition density,
exit time, killed process, mild solution, blow up.

Recibido: 27 de marzo de 2025. Aceptado: 6 de noviembre de 2025. Publicado: 12 de diciembre de 2025.

1. Introducción

En la actualidad, debido a su importancia tanto en la teoŕıa como en las aplicaciones, hay
un gran interés en el estudio de procesos de Markov simétricos. El proceso estocástico asociado al
operador laplaciano, por ejemplo, es un proceso de Markov simétrico llamado movimiento browniano
y ha sido usado en diferentes áreas del conocimiento cient́ıfico (e.g. la f́ısica, bioloǵıa, ingenieŕıa,
mecánica cuántica, finanzas, etc.). El movimiento browniano tiene trayectorias continuas de rápido
crecimiento sin derivada en ningún punto y ha permitido modelar sistemas con un gran número
de perturbaciones aleatorias. La distribución del desplazamiento de cada part́ıcula involucrada en
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esta difusión es gaussiana; luego es posible calcular el desplazamiento promedio, aśı como también
que tanto se dispersa éste del valor real, es decir, su varianza.

Ahora bien, cuando la distribución del desplazamiento de cada part́ıcula tiene un decaimiento
asintóticamente lento, tipo polinomial, a este prototipo de difusión se le conoce en la literatura como
difusión anómala y es de especial interés en mecánica estad́ıstica. En este movimiento anormal no
es posible, en algunos casos, calcular el desplazamiento promedio de las part́ıculas y cuando lo es,
desafortunadamente no es posible determinar su varianza. Ejemplos que exhiben difusión anómala
son: el movimiento de part́ıculas en flujos turbulentos, el transporte de carga en sólidos anómalos, las
micelas disueltas, los vidrios porosos, el enfriamento por láser con retroceso secundario y la dinámica
caótica. Es bien sabido que la difusión anómala puede ser adecuadamente descrita mediante las
trayectorias discontinuas del proceso de Lévy simétrico α-estable y su generador ∆α = −(−∆)α/2,
α ∈ (0, 2) (laplaciano fraccionario). El lector interesado en como se hace esto y en otras áreas de
aplicación, puede consultar [1, 7, 27] y las referencias alĺı dadas.

También en matemáticas financieras se ha observado que, aunque los procesos α-estables pro-
porcionan mejores representaciones de datos financieros que los procesos gaussianos, los datos finan-
cieros tienden a volverse más gaussianos en una escala de tiempo más larga. Los llamados procesos
α-estables relativistas tienen esta propiedad requerida: se comportan como procesos α-estables
en pequeña escala y se comportan como el movimiento browniano a gran escala. Otros procesos
que tienen este tipo de propiedad se pueden obtener “atenuando” o “truncando” los procesos α-
estables, es decir, multiplicando las densidades de Lévy de los procesos α-estables con factores
decrecientes estrictamente positivos y completamente monótonos. Este procedimiento genera una
clase importante de procesos, llamados procesos de Lévy simétricos α-estables truncados, que sur-
gen de manera natural en aplicaciones donde solo se permiten saltos hasta un tamaño prefijado
(ver [20] y las referencias alĺı dadas).

Si se conoce de manera expresa la densidad de transición p(t, x, y) de un proceso de Markov
X, entonces es evidente que el estudio de sus trayectorias es menos complicado y en consecuencia
el análisis del fenómeno asociado. Sin embargo, excepto en algunos casos especiales, obtener una
expresión expĺıcita de p(t, x, y) (en caso de que exista) suele ser imposible. En el campo de ecuaciones
diferenciales parciales, a la densidad de transición p(t, x, y) se le conoce como kernel de calor. Si
L denota el generador del proceso de Markov X, se dice entonces que p(t, x, y) es la solución
fundamental de la ecuación del calor ∂tu = Lu. Por lo tanto, conocer propiedades y estimaciones
precisas de p(t, x, y) es una cuestión fundamental tanto en la teoŕıa de la probabilidad como en
ecuaciones diferenciales parciales. Estos tipos de estudios se han realizado desde hace más de un
siglo para procesos de difusión, aunque para procesos discontinuous apenas se logró comenzar en
este siglo (ver [3] y referencias dadas alĺı). No obstante, estudiar las propiedades y estimaciones del
kernel de calor de Dirichlet pD(t, x, y), el cual es la solución fundamental del problema ∂tu = Lu,
u|Dc = 0, D dominio en Rd, es todav́ıa más complicado. En teoŕıa de probabilidad, el kernel de
calor de Dirichlet pD(t, x, y) es la densidad de transición asociada al proceso matado XD. Una de
las razones por la que es tan complejo conocer sus propiedades y estimaciones, viene directamente
de la definición de la misma, a saber

pD(t, x, y) := p(t, x, y)− Ex
{
p
(
t− τD, X(τD), y

)
; t > τD

}
, t > 0, x, y ∈ Rd, (1)

donde τD es la primera vez que el procesoX abandona el dominioD. Nótese que al ser pD(t, x, y) una
resta, una caracteŕıstica tan básica como la positividad (recuerde que una densidad de transición
es no negativa) deja de ser inmediata.

En la mayoŕıa de los trabajos que obtienen estimaciones y propiedades de pD(t, x, y), se utilizan
estimaciones y propiedades conocidas de p(t, x, y). El objetivo de este trabajo es proporcionar

https://revistajobs.ujat.mx 30

https://revistajobs.ujat.mx


Ceballos-Lira et al. Journal of Basic Sciences vol. 11(32), p. 29–51 , septiembre–diciembre 2025

demostraciones de propiedades elementales de pD(t, x, y) para una clase de procesos de Markov
fuertes, simétricos, continuos por la derecha y cuasi continuos por la izquierda (ver el inicio de la
Sección 2). Cabe destacar que esta clase de procesos incluye importantes procesos de Lévy y procesos
de Feller que surgen tanto en matemática pura como en la aplicada (ver Ejemplos 2.1, 2.2 y 2.3).
El resultado principal de este art́ıculo es el Teorema 4.1 y las propiedades elementales probadas
son: la ecuación de Chapman-Kolmogorov, la continuidad y la simetŕıa. La mayoŕıa de trabajos
que se conocen sobre estimaciones de pD(t, x, y) (en el caso de procesos de Markov discontinuos),
dejan al lector la prueba de tales propiedades elementales e indican que es suficente guiarse de las
demostraciones para el caso gaussiano, usando las estimaciones conocidas de p(t, x, y). La referencia
estándar recomendada para esta labor es [15]. Sin embargo, consideramos que las pruebas no son tan
directas como en el caso gaussiano, ya que en este caso se utiliza la continuidad de las trayectorias
del movimiento browniano. Otra ventaja empleada en tales pruebas, es que se conoce de manera
expĺıcita la función de densidad de probabilidad de transición del movimiento browniano, la cual
es unimodal, isotrópica y uniformemente continua en Rd×Rd para cada t > 0. Estas bondades han
permitido obtener diferentes demostraciones de dichas propiedades básicas a lo largo de los años.
Consideramos entonces que este trabajo de difusión atenderá ese vaćıo frecuentemente ignorado en
la literatura y motivará a los lectores a conocer más sobre tales procesos discontinuos. Más aún, en
nuestra última sección presentamos una aplicación de tales propiedades a la teoŕıa de ecuaciones
diferenciales parciales parabólicas semilineales no autónomas. Cabe destacar que, en este art́ıculo,
las demostraciones de los resultados son dadas en forma más detallada que las presentadas en las
referencias [4, 6, 15, 16, 18, 21, 24]. En cada uno de nuestros resultados y demostraciones, donde
utilizamos alguna de las anteriores fuentes bibliográficas, indicamos la cita, el resultado espećıfico
en el cual nos basamos y su página. Incluso, en algunos casos, algunas ideas de tales fuentes fueron
adaptadas para poderlas aplicar en el contexto de nuestros procesos de interés.

Este trabajo está organizado de la siguiente manera: En la Sección 2 introducimos el proceso
de Markov con el que estaremos trabajando y presentamos algunos ejemplos. En la Sección 3 pro-
bamos propiedades del tiempo de salida τD. Estas propiedades son importantes ya que la densidad
de transición pD(t, x, y) se expresa en términos de τD (ver (1)) y las trayectorias de X podŕıan
tener saltos. La Sección 4 versa sobre las propiedades elementales mencionadas anteriormente. Se
presentan demostraciones de ellas y de algunas otras propiedades. En la Sección 5 mostramos
una aplicación de las propiedades de pD(t, x, y) a la solución de una ecuación de Cauchy de tipo
reacción-difusión, con condiciones de frontera de Dirichlet.

En este art́ıculo usamos la siguiente notación: | · | es la norma euclidiana en Rd, d(F,G) es la
distancia euclidiana entre F,G ⊆ Rd, mℓ(dx) = dx es la medida de Lebesgue en Rd, B(D) es la
σ-álgebra de Borel en D, Cpc (D) es el espacio de todas las funciones reales continuas de clase Cp,

con soporte compacto contenido en D, p = 0, 1, 2, . . . ,∞ y Cp0 (D) = Cpc (D); D ⊆ Rd (convenimos
que C0

c (D) = Cc(D) y C0
0 (D) = C0(D)). Br(x) es la bola abierta de radio r > 0 centrada en x ∈ Rd,

∥ · ∥p, p ∈ [1,∞], es la norma en Lp(D), D ⊆ Rd.

2. Proceso de Markov simétrico y ejemplos

Sea X =
(
Ω,F ,P,Ft, X(t),Px; t ≥ 0, x ∈ Rd

)
un proceso de Hunt1, es decir, X es un proceso

de Markov (temporalmente homogéneo) con las siguientes propiedades:

[H1] : X es continuo a la derecha.

1Para el lector interesado, [6] y [16] son referencias clásicas sobre este tipo de procesos. En [6] los procesos de Hunt
son llamados procesos estándar. El libro [18] contiene en su apéndice una introducción concisa sobre estos procesos,
ya que el objetivo de los autores es estudiar formas de Dirichlet para procesos de Markov generales.
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[H2] : X es quasi continuo a la izquierda.

[H3] : X tiene la propiedad fuerte de Markov.

[H4] : X es normal, es decir, Px{X(0) = x} = 1, x ∈ Rd.

Suponemos adicionalmente que X tiene una densidad de probabilidad de transición p(t, x, y) tal
que:

[p1] : Para cada t > 0, p(t, •, •) es continua en Rd × Rd.

[p2] : p(t, x, y) = p(t, y, x), t > 0, x, y ∈ Rd.

[p3] : Mδ := sup{p(t, x, y); t > 0, |x− y| > δ} <∞.

Observe que [p2] implica que X es simétrico. Dado B ∈ B(Rd) definamos la variable aleatoria
τB := ı́nf{t > 0;X(t) /∈ B}. Vamos a suponer que la función de distribución de la variable aleatoria
τBδ(x) satisface:

[Fτ ] : ĺım
t↓0

sup
x∈Rd

Px{τBδ(x) ≤ t} = 0, δ > 0.

La variable aleatoria τB es el primer instante o tiempo de salida del conjunto B. Es inme-
diato que si A ⊆ B, entonces τA ≤ τB. Enunciamos a continuación otras propiedades elementales.
Los resultados propuestos son conceptos técnicos frecuentemente utilizados y sus demostraciones
usualmente son omitidas en la mayoŕıa de los textos. Cabe destacar que, en el caso de trayectorias
continuas, las demostraciones son directas. Sin embargo, dado que ese no es nuestro caso, presenta-
remos con detalle dichas pruebas. En lo que sigue Ω ∋ ω 7→ θt(ω) ∈ Ω denota el operador traslación
que satisface X(s) ◦ θt(ω) = X(s+ t)(ω), s, t ≥ 0.

Proposición 2.1. Sea B ∈ B(Rd).

1. τB es terminal, es decir, si T es un tiempo de paro, entonces τB = T + τB ◦ θT sobre el evento
{T < τB}.

2. Px{τB > 0} = 1, x ∈ B◦.

3. Si B es abierto, entonces X(τB) /∈ B sobre el evento {τB <∞}.

4. Si B es cerrado, entonces la función de distribución de τB está dada por el siguiente ĺımite

Px{τB ≥ t} = ĺım
n→∞

Px{X(kt/2n) ∈ B; k = 1, . . . , 2n − 1}.

Demostración. 1. Si τB = ∞, el resultado es inmediato. De la definición de ı́nfimo, se tiene que

T + τB ◦ θT = ı́nf{t > T ;X(t) /∈ B} (2)

y aśı, nuevamente de la definición de ı́nfimo τB ≤ T + τB ◦ θT . Para probar la igualdad
procederemos por contradicción. En efecto, supongamos que existe ω tal que τB(ω) < T (ω)+
τB ◦ θT (ω). Entonces, de la definición de ı́nfimo, existe t > 0 tal que τB(ω) ≤ t < T (ω) +
τB ◦ θT (ω) y X(t, ω) /∈ B. Puesto que T (ω) < τB(ω), de lo anterior y (2), se obtiene que
T (ω) + τB ◦ θT (ω) ≤ t, lo cual es la contradicción deseada.
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2. Si τB(ω) = 0, entonces existe una sucesión decreciente (tn) tal que ĺımn→∞ tn = 0, X(tn, ω) ∈
Bc. Si adicionalmente se tiene que X(0, ω) = x, por [H1] se llega a que B◦ ∋ x = X(0, ω) =
ĺımn→∞X(tn, ω) ∈ Bc. Luego, de [H4] tenemos que Px{τB = 0} = Px{τB = 0, X(0) = x} = 0.

3. Usando el argumento anterior puede demostrarse que si τB(ω) < ∞, entonces se tiene que
X
(
τB(ω), ω

)
∈ Bc = Bc.

4. Para cada t > 0 y n ∈ N sea Jt(n) := {jk := kt/2n; k = 1, . . . , 2n − 1} y sea Jt := ∪∞
n=1Jt(n).

Entonces Jt ⊆ (0, t) y Jt = [0, t]. Usando que B es cerrado y [H1], puede probarse que
{X(s) ∈ B, s ∈ (0, t)} = {X(j) ∈ B, j ∈ Jt}. Pero en general, de la definición de ı́nfimo,
{τB ≥ t} = {X(s) ∈ B, s ∈ (0, t)} y aśı {τB ≥ t} = ∩∞

n=1{X(jk) ∈ B; k = 1, . . . , 2n − 1}.
El resultado es ahora consecuencia del teorema de la convergencia monótona (aplicado a las
funciones indicadoras de los complementos de estos eventos).

Presentamos a continuación algunos ejemplos de procesos de Markov que cumplen las propie-
dades [H1], [H2], [H3], [H4], [p1], [p2], [p3] y [Fτ ]. Junto a cada proceso dado se presenta una forma
no trivial de su generador.

Ejemplo 2.1. Sea X un proceso de Lévy simétrico con densidad de probabilidad de transición
que satisface [p1] y [p3]. Claramente X cumple [H1]-[H4] y [p2]. Para verificar [Fτ ], sean δ > 0,
B := Bδ/2(x) y B0 := Bδ/2(0). Nótese que de la Proposición 2.1.4 y el hecho de que todo proceso de
Lévy es espacialmente homogéneo, se tiene que

Px
{
τB ≥ 2t

}
= ĺım

n→∞
Px

{
X(kt/2n) ∈ B; k = 1, . . . , 2n − 1

}
= ĺım

n→∞
P0

{
X(kt/2n) ∈ B0; k = 1, . . . , 2n − 1

}
= P0

{
τB0 ≥ 2t

}
.

Se sigue de esto y la Proposición 2.1.2 que

ĺım
t↓0

sup
x∈Rd

Px
{
τBδ(x) ≤ t

}
≤ ĺım

t↓0
sup
x∈Rd

Px
{
τB < 2t

}
= 0.

Presentamos a continuación un ejemplo espećıfico.
Sea X un movimiento browniano subordinado, es decir, X(t) = W

(
S(t)

)
, t ≥ 0, donde S =(

S(t); t ≥ 0
)
es un subordinador independiente del movimiento browniano W =

(
W (t); t ≥ 0

)
. Por

tanto, la densidad de probabilidad de transición esta dada por

p(t, x, y) =

∫ ∞

0
(4πs)−d/2e−

|x−y|2
4s P{S(t) ∈ ds}.

La función (4πs)−d/2e−
|x−y|2

4s es uniformemente continua y uniformemente acotada sobre el conjunto
{(s, x, y); s > 0, |x− y| > δ}, luego p(t, x, y) satisface [p1] y [p3]. Sea ψ el exponente de Laplace de
S, esto es

ψ(r) = νr +

∫ ∞

0
(1− e−rt)µ(dt), r ≥ 0,

donde ν ≥ 0, µ es la medida de Lévy del subordinador S. Si L es el generador de X, entonces se
conoce que Lf(x) = −ψ(−∆)f(x), x ∈ Rd, f ∈ C∞

c (Rd) (ver [2, Teorema 3.3.15, p. 145]).
Los movimientos brownianos subordinados son la fuente de múltiples operadores usados en di-

ferentes áreas de la ciencia. Algunos de ellos son: ∆ (laplaciano); ∆α := −(−∆)α/2, α ∈ (0, 2)
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(laplaciano fraccionario); mc2− (m2/αc4/α− c2/α∆)α/2, m, c > 0, α ∈ (0, 2) (operador Schrödinger
relativista fraccionario); ∆α +∆β, 0 < β < α < 2; ∆+∆α, α ∈ (0, 2). El caṕıtulo 3 de [2] es una
referencia básica acerca de la teoŕıa general que involucra los operadores anteriores. Dicho caṕıtulo
incluye información acerca de el laplaciano, el laplaciano fraccionario y el operador Schrödinger
relativista fraccionario; mientras que [12] y [11] contienen infomación más especializada acerca de
∆α +∆β y ∆+∆α, respectivamente.

En el siguiente ejemplo Γ(·) denota la función gamma. Recuerde que ésta se define por Γ(x) :=∫∞
0 tx−1e−t dt, x > 0.

Ejemplo 2.2. Sea Rd × Rd \ {(x, x);x ∈ Rd} ∋ (x, y) 7→ J(x, y) ∈ [0,∞) una función medible y
simétrica, es decir J(x, y) = J(y, x), x, y ∈ Rd. Para cualesquiera f, g ∈ L2(Rd) definamos

E(f, g) :=
∫
Rd×Rd

[f(x)− f(y)][g(x)− g(y)]J(x, y)dxdy,

y Dom(E) := {f ∈ L2(Rd); E(f, f) < ∞}. Suponga que existe una función creciente (0,∞) ∋ t 7→
ψ(t) ∈ (0,∞) con las siguientes propiedades:

1. Existen β1, β2 > 0 y c1, c2 > 0 tales que

c1

(
R

r

)β1
≤ ψ(R)

ψ(r)
≤ c2

(
R

r

)β2
, 0 < r ≤ R. (3)

2.

∫ 1

0

s

ψ(s)
ds <∞.

3. Existe C̄ > 0 de modo que

C̄−1

|x− y|dψ(|x− y|)
≤ J(x, y) ≤ C̄

|x− y|dψ(|x− y|)
. (4)

Bajo las hipótesis anteriores
(
E ,Dom(E)

)
es una forma regular de Dirichlet en L2(Rd) con kernel de

saltos J , por lo que existe un proceso de Feller conservativo X que posee una densidad de transición
continua p(t, x, y) en (0,∞)× Rd × Rd y además cumple que

p(t, x, y) ≤ Ct

|x− y|dψ(|x− y|)
+

C

Φ−1(t)d
e−a∗|x−y|

2/Φ−1(t)2 , t > 0, x, y ∈ Rd, (5)

donde a∗, C > 0 y Φ−1 es la inversa de

Φ(r) :=
r2

2
∫ r
0

s
ψ(s) ds

, r > 0

(ver [3, Teorema 1.2, pág. 2833]). El hecho de que X es conservativo garantiza que p(t, x, y) es
una densidad de probabilidad de transición, es decir,

∫
Rd p(t, x, y) dy = 1, para toda t > 0, x ∈

Rd. La función Φ es estrictamente creciente y ĺımr↓0Φ(r) = 0 como puede consultarse en [3,
p. 2836]. Observe que si

∫∞
0

s
ψ(s) ds = ∞, entonces de (3) se sigue que ĺımr→∞Φ(r) = ∞. Si∫∞

0
s

ψ(s) ds <∞, entonces es claro que el ĺımite anterior se cumple. De esta manera ĺımt↓0Φ
−1(t) =

0 y ĺımt→∞Φ−1(t) = ∞. Usando estos ĺımites, (5) y que ψ es creciente, puede probarse que p(t, x, y)
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satisface [p3]. Finalmente, veamos que X tiene la propiedad [Fτ ]. En efecto, utilizando el lado
izquierdo de (3) obtenemos que, para toda r > 0,∫

Br(x)c

Ct

|x− y|dψ(|x− y|)
dy =

∞∑
n=0

∫
B2n+1r(x)\B2nr(x)

Ct

|x− y|dψ(|x− y|)
dy

≤ Ct

rdψ(r)

∞∑
n=0

mℓ

(
B2n+1r(x)

)
2(d+β1)n

=
C ′t

ψ(r)
,

(6)

donde C ′ := C2d+β1πd/2/[c1Γ(1 + d/2)(2β1 − 1)] . Por otra parte, observe que

Ir(t) :=

∫
Br(x)c

C

Φ−1(t)d
e−a∗|x−y|

2/Φ−1(t)2 dy

=

∫ ∞

r/Φ−1(t)
Cud−1e−a∗u

2
du

≤ C

2a
d/2
∗

Γ
(d
2

)
,

para toda r > 0. La función Ir(·) es creciente y ĺımt↓0 Ir(t) = 0. Las relaciones anteriores y (5)
implican que

Px{X(t) /∈ Bδ/2(x)} ≤ C ′t

ψ(δ/2)
+ Iδ/2(t), δ > 0. (7)

Sin embargo, por la Proposición 2.1.3, X
(
τBδ(x)

)
/∈ Bδ(x) en el evento {τBδ(x) ≤ t} por lo que

Px{X(t) ∈ Bδ/2(x), τBδ(x) ≤ t} ≤ Px
{
X(t) /∈ Bδ/2

(
X(τBδ(x))

)
, τBδ(x) ≤ t

}
= Ex

{
PX(τBδ(x)

)

{
X(t− τBδ(x)) /∈ Bδ/2

(
X(τBδ(x))

)}
; τBδ(x) ≤ t

}
≤ sup

z∈Rd,s≤t
Pz{X(s) /∈ Bδ/2(z)},

donde se ha usado [H3] en la igualdad. Ahora [Fτ ] es consecuencia del hecho de que

Px{τBδ(x) ≤ t} ≤ Px{X(t) /∈ Bδ/2(x)}+ Px{X(t) ∈ Bδ/2(x), τBδ(x) ≤ t}

y la desigualdad (7).
En general, es dif́ıcil encontrar una fórmula expĺıcita para el generador de un proceso de Markov

simétrico de saltos puros, incluso si este está asociado a una forma regular de Dirichlet. No obstante,
esto es posible si se conocen más propiedades del kernel de saltos J . Por ejemplo, si

∫
Rd(|x− y|2 ∧

1)J(x, y) dy es localmente integrable y∫
B1(0)

|h||J(x, x+ h)− J(x, x− h)| dh <∞,

entonces el generador L de X tiene la forma

Lf(x) = ĺım
ε↓0

∫
Bε(x)c

[f(x)− f(y)]J(x, y) dxdy, x ∈ Rd, f ∈ C2
0 (Rd),

ver [26, Teorema 2.2, p. 404].

https://revistajobs.ujat.mx 35

https://revistajobs.ujat.mx


Ceballos-Lira et al. Journal of Basic Sciences vol. 11(32), p. 29–51 , septiembre–diciembre 2025

Ejemplo 2.3. Sea A(x) =
(
aij(x); i, j = 1, . . . , d

)
una matriz de funciones reales definidas en Rd

que es uniformemente eĺıptica y acotada, en el sentido de que existe una constante c ≥ 1 tal que

c−1|z|2 ≤
d∑
i=1

d∑
j=1

aij(x)zizj ≤ c|z|2, x, z ∈ Rd

y Rd × Rd \ {(x, x);x ∈ Rd} ∋ (x, y) 7→ J(x, y) ∈ [0,∞) es una función medible simétrica tal que
existe una función estrictamente creciente [0,∞) ∋ r 7→ ψ(r) ∈ [0,∞), con ψ(0) = 0, ψ(1) = 1, que
satisface (3) y (4). En este caso las constantes positivas β1 y β2 están relacionadas por β1 ≤ β2 < 2.
Observamos que si c∗ := 1 + c2(2− β2)

−1, entonces el lado derecho de (3) garantiza que∫ r

0

s

ψ(s)
ds ≤ c∗

r2

ψ(r)
, r > 0. (8)

Para cada f, g ∈ L2(Rd) definamos

E(f, g) := 1

2

∫
Rd

∇f(x)A(x)∇g(x)tdx+

∫
Rd×Rd

[f(x)− f(y)][g(x)− g(y)]J(x, y)dxdy,

donde Dom(E) := {f ∈ L2(Rd); E(f, f) < ∞}. Luego,
(
E ,Dom(E)

)
es una forma regular de Di-

richlet en L2(Rd) y por tanto existe un proceso de Hunt simétrico X con función de densidad de
transición continua p(t, x, y) tal que

p(t, x, y) ≤ t

|x− y|dψ(|x− y|)
+

1

td/2
e−b|x−y|

2/t, t > 0, x, y ∈ Rd, (9)

donde b > 0 y su generador L está dada por

Lf(x) = 1

2

d∑
i=1

d∑
j=1

∂

∂xi

(
aij(x)

∂f

∂xj
(x)

)
+ ĺım

ε↓0

∫
Bε(x)c

[f(x)− f(y)]J(x, y) dy,

x ∈ Rd, f ∈ C1
c (Rd) (ver [13, Teorema 1.4, p. 557]). Los lados derechos de (3) y (4) implican que

J(x, y) ≤ c2
|x− y|d+β2

cuando |x− y| ≤ 1. (10)

Además, usando (8) y argumentando como en (6) concluimos que

sup
x∈Rd

∫
Rd

(|x− y|2 ∧ 1)J(x, y) dy ≤ sup
x∈Rd

∫
B1(0)

|x− y|2J(x, y) dy + sup
x∈Rd

∫
B1(0)c

J(x, y) dy

≤ C̄

∫ 1

0

s

ψ(s)
ds+

C ′

ψ(1)

≤ C̄c∗ + C ′.

De de esto y (10) se puede demostrar, en forma similar a [13, p. 563], que el proceso X es conser-
vativo. Las propiedades [p3] y [Fτ ] son válidas y su demostración es similar a la dada en el Ejemplo
2.2 pero usando ahora la desigualdad (9).
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3. Propiedades del tiempo de salida

En esta sección presentamos algunas propiedades importantes del tiempo de salida τB. El tiempo
de salida es una variable aleatoria que nos permitirá estudiar la probabilbidad de transición del
procesoX en algún boreliano B. Las probabilidades de transición en B, serán estimadas mediante la
densidad de transición de Dirichlet, la cual, como mencionamos en nuestra introducción, se expresa
en términos del tiempo de salida. De aqúı la importancia de conocer propiedades de τB. En lo que
resta de esta sección, suponemos que B ∈ B(Rd).

En general, si una variable aleatoria es absolutamente continua respecto a la medida de Lebes-
gue, es imposible que con probabilidad positiva tome valores en el boreliano {t}, con t > 0. La
siguiente proposición nos dice que τB tiene esta propiedad y su demostración está basada en la
prueba del Teorema 4.7 de [24, p. 11], en el contexto gaussiano.

Proposición 3.1. Para cada t > 0 y x ∈ Rd se tiene que Px{τB = t} = 0.

Demostración. Sean t > 0 y x ∈ Rd. Supongamos válida la siguiente afirmación:

[A] : Existe s ∈ (0, t) tal que P•{τB = s} = 0, mℓ-c.d.q.

Usando la Proposición 2.1.1 puede probarse que {τB = t} = {τB > t − s, t − s + τB ◦ θt−s = t}.
Esto junto con [H3] y la afirmación [A] implican que

Px{τB = t} ≤ Px{τB ◦ θt−s = s} = Ex
{
PX(t−s){τB = s}

}
=

∫
Rd

Py{τB = s}p(t− s, x, y) dy = 0.

Probemos entonces [A]. Dado B ⊆ Rd denotamos por #B la cardinalidad de B. Recuerde que B
es finito cuando #B < ℵ0, donde ℵ0 = #N. Para cada n ∈ N ∪ {0}, sea An := Bn+1(0) \ Bn(0).
Nótese que ∑

s∈(0,t)

∫
An

Py{τB = s} dy = sup

{∫
An

Py{τB ∈ F} dy;F ⊆ (0, t),#F < ℵ0

}
≤ mℓ(An) <∞.

Luego, si Pn := {s ∈ (0, t);
∫
An

Py{τB = s}dy > 0} se sigue de [17, Proposición 0.20, p. 11] que

#Pn ≤ ℵ0. Sea P := {s ∈ (0, t);
∫
Rd Py{τB = s} dy > 0}. Usando que∫

Rd

Py{τB = s} dy =
∞∑
n=0

∫
An

Py{τB = s}dy,

deducimos que P = ∪∞
n=0Pn. Finalmente, al ser (0, t) = P ∪P c y #P ≤ ℵ0, concluimos que P c ̸= ∅

y aśı [A] es verdadera.

Dado que el tiempo de salida τB podŕıa ser∞, una pregunta interesante es ¿Bajo qué condiciones
τB es finito? La respuesta a esta cuestión viene dada en el Teorema 3.1 y para su demostración
haremos uso de la semicontinuidad inferior de la función Rd ∋ x 7→ Px{τB ≤ t}, t > 0. Esta última
afirmación es el enunciado de nuestra siguiente proposición y su demostración se basa en las pruebas
dadas en [4, p. 81, Proposición 1.10], [15, p. 22, Proposición 1.19], [16, p. 163, Proposición 1] y [24,
p. 20, Proposición 2.1]. Sin embargo, cabe destacar que en tales demostraciones se utiliza que, para
cada δ ∈ (0, t), la función Rd ∋ x 7→ Ex

{
PX(δ){τB ≤ t − δ}

}
es continua, lo cual es consecuencia

del hecho de que la densidad de probabilidad de transición del movimiento browniano es conocida.
Nosotros no hacemos uso de esto, ya que bajo nuestros supuestos, no tenemos fórmula expĺıcita de
p(t, x, y).
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Proposición 3.2. Para cada t > 0 la función Rd ∋ x 7→ Px{τB ≤ t} es semicontinua inferiormente.

Demostración. Para cada δ > 0 sean fδ(x) := Ex
{
PX(δ){τB ≤ t−δ}

}
y τB(δ) := δ+τB ◦θδ. Observe

que τB(δ) = ı́nf{t > δ;X(t) /∈ B}, τB(•) es decreciente y ĺımδ↓0 τB(δ) = τB. De la definición de fδ,
la propiedad [p1] y el lema de Fatou, tenemos

fδ(x) =

∫
Rd

Py{τB ≤ t− δ}p(δ, x, y) dy

=

∫
Rd

ĺım inf
z→x

Py{τB ≤ t− δ}p(δ, z, y) dy

≤ ĺım inf
z→x

∫
Rd

Py{τB ≤ t− δ}p(δ, z, y) dy

= ĺım inf
z→x

fδ(z).

Por lo tanto cada fδ es semicontinua inferiormente. Por [H3] obtenemos que fδ(x) = Px{τB(δ) ≤
t}, por lo que f•(x) es creciente para cada x ∈ Rd. Se sigue de esto y la Proposición 3.1 que
ĺımδ↓0 fδ(x) = Px{τB < t} = Px{τB ≤ t}. De aqúı, el resultado se sigue por la semicontinuidad
inferior de cada fδ.

El siguiente teorema presenta dos condiciones bajo las cuales τB es finita, casi seguramente. La
demostración se basa en la prueba del Teorema 1.17 en [15, p. 20] y la Proposición 2.8 en [24, p.
23].

Teorema 3.1. Considere los siguientes enunciados.

1. mℓ(B) <∞ y existe [0,∞) ∋ t 7→ ϕ(t) ∈ [0,∞) tal que ϕ
(
(0,∞)

)
⊆ (0,∞), ĺımt→∞ ϕ(t) = ∞

y p(t, x, y) ≤ 1/ϕ(t) para toda t > 0, x, y ∈ Rd.

2. mℓ(B
c) > 0 y p(t, x, y) > 0 para toda t > 0, x, y ∈ Rd.

Si cualquiera de los enunciados anteriores se cumple, entonces se tiene que

sup
x∈Rd

Ex{τB} <∞.

Demostración. Comenzamos suponiendo que 1. es cierto. Sea t0 > 0 suficientemente grande de
manera que mℓ(B) < ϕ(t0) y sea κ := mℓ(B)/ϕ(t0). Entonces κ ∈ (0, 1) y x ∈ Rd se tiene que

Px{τB > 2t0} ≤ Px{X(t0) ∈ B} =

∫
B
p(t0, x, y) dy ≤ 1

ϕ(t0)

∫
B
dy = κ.

Luego, la propiedad [H3] implica que para toda n ∈ N,

Px{τB > (n+ 1)2t0} = Ex
{
PX(n2t0){τB > 2t0}; τB > n2t0

}
≤ κPx{τB > n2t0}.

Por inducción matemática concluimos que Px{τB > n2t0} ≤ κn, n ∈ N ∪ {0}. Por lo tanto, para
toda x ∈ Rd,

Ex{τB} ≤ 2t0

∞∑
n=0

Px{τB > n2t0} =
2t0

1− κ
,

lo cual concluye nuestra demostración en esta primera parte.
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Supongamos ahora que 2. se cumple. Por la Proposición 3.1 tenemos que

Px{τB ≤ 1} = Px{τB < 1} ≥
∫
Bc

p(1/2, x, y) dy > 0, para toda x ∈ Rd. (11)

Sea f ∈ Cc(B) tal que 1B ≤ f ≤ 1. Para cada r ≥ 0 definamos Tr := ı́nf{t > 0;
∫ t
0 f

(
X(u)

)
du > r}.

Puesto que f ≤ 1, puede verse fácilmente que Tr ≥ r. Nótese que sobre {Tr < ∞} se cumple lo
siguiente:

[T1] :
∫ Tr
0 f

(
X(u)

)
du = r.

[T2] : {Tr ≥ t} =
{ ∫ t

0 f
(
X(u)

)
du ≤ r

}
.

[T3] : Tr+1 = Tr + T1 ◦ θTr .

Es bien sabido que para cualquier proceso de Markov (espacialmente homogéneo) que satisface [H1]-
[H4], la filtración (Ft; t ≥ 0) es continua a la derecha (ver por ejemplo [16, p. 75]). La propiedad
[T2] y la continuidad a la derecha de la filtración (Ft; t ≥ 0) implican que Tr es un tiempo de
paro. Afirmamos que para cada r > 0 se tiene que X(Tr) ∈ Supp(f) sobre {Tr < ∞}, donde
Supp(f) := {x ∈ B; f(x) ̸= 0}. En efecto, supongamos que para alguna r > 0 se cumple que
X(Tr) /∈ Supp(f). Entonces existe ω y una bola abierta Bϵ

(
X(Tr)(ω)

)
tal que f se anula sobre ella.

Luego, debido a [H1] podemos fijar γ > 0 suficientemente pequeña de manera que f
(
X(•, ω)

)
= 0

sobre
[
Tr(ω), Tr(ω) + γ

)
. Usando esto y las propiedades [T1], [T2] se llega a que

r <

∫ Tr(ω)+γ

0
f
(
X(u, ω)

)
du =

∫ Tr(ω)

0
f
(
X(u, ω)

)
du = r,

lo cual es una contradicción. Esto prueba nuestra afirmación. Sea δ := ı́nfx∈Supp(f) Px{τB ≤ 1}. De
la Proposición 3.2 se sigue que existe x0 ∈ Rd tal que δ = Px0{τB ≤ 1}. Más aún, (11) implica que
δ > 0. Utilizando [H3], [T3], el hecho de que Tr ≥ r y que X(Tr) ∈ Supp(f) en el evento {Tr < τB},
concluimos que

Px{Tr+1 < τB} = Ex
{
PX(Tr){T1 < τB};Tr < τB

}
≤ (1− δ)Px{Tr < τB}, r > 0, x ∈ Rd.

Por inducción matemática se obtiene que Px{Tn < τB} ≤ (1 − δ)n−1, n ∈ N. Luego, puesto que
1(0,τB/2](t)1Bc

(
X(t)

)
= 0, 1B ≤ f y [T2],

Ex
{τB

2

}
≤ Ex

{∫ τB

0
f
(
X(t)

)
dt

}
≤

∞∑
n=0

Px
{∫ τB

0
f
(
X(t)

)
dt > n

}
≤ 1 +

∞∑
n=1

Px{Tn < τB}.

Por lo tanto Ex{τB} ≤ 2(1 + δ−1) para toda x ∈ Rd. Esto último concluye la prueba de este
teorema.

El movimiento browniano y el proceso simétrico α-estable son ejemplos de procesos de Markov
cuyas respectivas funciones de densidad de probabilidad cumplen ambas condiciones del Teorema
3.1. En efecto, en el caso del movimiento browniano se conoce que

p(t, x, y) =
1

(2πt)d/2
e−

|x−y|2
2t , x, y ∈ Rd, t > 0,

por lo que ambas condiciones del Teorema 3.1 se cumplen. Para el proceso simétrico α-estable, ver
el Teorema 2.1 en [14, p. 208], incisos (1) y (5). Los procesos de Markov en los Ejemplos 2.2 y 2.3
satisfacen la segunda condición del Teorema 3.1 sobre cualquier boreliano acotado B. En efecto,
para el Ejemplo 2.2 ver [3, Teorema 1.2, p. 2833] y para el Ejemplo 2.3 ver [13, Teorema 1.4, p.
557].
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4. Propiedades de la densidad de transición de Dirichlet

En esta sección contruimos una densidad de transición pD(t, x, y) para el proceso matado asocia-
do a X y presentamos algunas de sus propiedades. Como veremos en la próxima sección, pD(t, x, y)
es el kernel de calor de Dirichlet y por esta razón es conocido también en la literatura como densidad
de transición de Dirichlet. En esta sección suponemos que D ∈ B(Rd).

Definamos r(t, x, y) := Ex
{
p
(
t− τD, X(τD), y

)
; t > τD

}
, t > 0, x, y ∈ Rd y

pD(t, x, y) := p(t, x, y)− r(t, x, y), t > 0, x, y ∈ Rd. (12)

Observe que si B ∈ B(D), por el teorema de Tonelli, [H3] y la Proposición 3.1, se tiene que∫
B
pD(t, x, y) dy = Px{X(t) ∈ B} − Ex

{
PX(τD){X(t− τD) ∈ B}; t > τD

}
= Px{X(t) ∈ B} − Px{X(t) ∈ B, t > τD}
= Px{X(t) ∈ B, t < τD}.

Por lo tanto, si definimos el proceso matado XD =
(
XD(t); t ≥ 0

)
mediante

XD(t) :=

{
X(t), t < τD,

†, t ≥ τD,

donde † es un valor fijo, entonces hemos probado que pD(t, x, y) es una densidad de transición para
el proceso matado XD. Al punto fijo † se le denomina punto cementerio.

La densidad de transición pD(t, x, y) hereda algunas propiedades de la densidad de probabilidad
p(t, x, y). Antes de mostrar dichas propiedades probaremos tres lemas. El primero (Lema 4.1) es
un resultado preliminar que nos ayudará a probar la continuidad de las trazas pD(t, x, •), t > 0,
x ∈ D y pD(t, •, y), t > 0, y ∈ D, sobre D. Como veremos en el Teorema 4.1, lo anterior tendrá
como consecuencia la continuidad de pD(t, •, •) sobre D ×D, para cada t > 0.

Lema 4.1. Supongamos que D abierto y sea t > 0.

1. Para cada x ∈ Rd, r(t, x, •) es continua en D.

2. Sea h(s, x, y) := Ex{r(t − s,X(s), y)}, 0 < s < t, x, y ∈ Rd. Entonces, para cada s ∈ (0, t),
y ∈ D, h(s, •, y) es continua en Rd. Más aún, si K ⊆ D es compacto, entonces

ĺım
s↓0

sup
x∈K

|pD(t, x, y)− h(s, x, y)| = 0, y ∈ D.

Demostración. Puesto que D es abierto, para cada y ∈ D existe ϵy suficientemente pequeño de

manera que Bϵy(y) ⊆ D. Definamos δy := d
(
Dc, Bϵy(y)

)
. Luego, cada δy es positivo debido a que

Dc es cerrado.

1. Sea (yn) una sucesión en D que converge a y. De la Proposición 2.1.3 se sigue que la sucesión
de variables aleatorias

(
p
(
t− τD, X(τD), yn

)
1{t>τD}

)
está acotada por Mδy/2 para n suficien-

temente grande. Debido a [p3], es claro que Mδy/2 < ∞. Por el teorema de la convergencia
dominada y [p1], tenemos que ĺımn→∞ r(t, x, yn) = r(t, x, y) lo cual prueba nuestra afirmación.
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2. Sea (xn) una sucesión en Rd que converge a x ∈ Rd. Usando que y ∈ D, la Proposición 2.1.3
y [p3], concluimos que

p
(
t− τD, X(τD), y

)
1{s>τD} ≤M δy

2

<∞, para toda x ∈ Rd y t ≥ s. (13)

Luego, de la definición de r(t, x, y),

|h(s, xn, y)− h(s, x, y)| ≤
∫
Rd

r(t− s, z, y)|p(s, xn, z)− p(s, x, z)| dz

≤M δy
2

∫
Rd

|p(s, xn, z)− p(s, x, z)|dz.

Pero
∫
Rd p(t, xn, z) dz =

∫
Rd p(t, x, z) dz = 1 y p(s, xn, y), p(s, x, y) son no negativas, para

toda n, por lo que el lema de Scheffé implica que el lado derecho de la última desigualdad
converge a cero cuando n→ ∞. Esto prueba la primera parte de 2.

Ahora, sean t > 0, y ∈ D y s ∈ (0, t). De la propiedad [H3] y (13) se sigue que

|pD(t, x, y)− h(s, x, y)| =
∣∣Ex{p(t− τD, X(τD), y

)
; s ≥ τD

}
+ Ex

{
EX(s)

{
p
(
t− s− τD, X(τD), y

)
; t− s > τD

}
; t > τD > s

}
− h(s, x, y)

∣∣
≤ Ex

{
p
(
t− τD, X(τD), y

)
; s ≥ τD

}
+ Ex

{
EX(s)

{
p
(
t− s− τD, X(τD), y

)
; t− s > τD

}
; s ≥ τD

}
≤ 2M δy

2

Px{s ≥ τD}.

Sean K un subconjunto compacto de D y δ := d(Dc,K) > 0. Claramente para toda x ∈ K
se cumple que Bδ(x) ⊆ D. Por lo tanto

sup
x∈K

|pD(t, x, y)− h(s, x, y)| ≤ 2M δy
2

sup
x∈K

Px{τBδ(x) ≤ s}.

El resultado ahora es consecuencia de [Fτ ].

La demostración de Lema 4.1.2 se basa en la prueba del Teorema 2.4 en [21, p. 142].

El siguiente lema es crucial en la demostración de que para cada t > 0, pD(t, •, •) es simétrica
y su demostración se fundamenta en las pruebas de los siguientes resultados: [15, p. 33, Teorema
2.4], [4, p. 122, Proposición 4.1], [18, p. 153, Lema 4.1.3], [24, p. 36, Teorema 4.3].

Lema 4.2. Sean B,C ∈ B(D) con D cerrado. Entonces∫
C
Px{X(t) ∈ B, t ≤ τD}dx =

∫
B
Px{X(t) ∈ C, t ≤ τD} dx,

para toda t > 0.
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Demostración. En la prueba de la Proposición 2.1.4 se observó que el hecho de que D es cerrado
implica que {t ≤ τD} = ∩∞

n=1{X(jk) ∈ D; jk = kt/2n, k = 1, . . . , 2n − 1}. Luego, al ser p(t, x, y)
una densidad de probabilidad de transición se tiene que∫

C
Px{X(t) ∈ B, t ≤ τD} dx

= ĺım
n→∞

∫
C
Px0{X(j1) ∈ D,X(j2) ∈ D, . . . ,X(j2n) ∈ B} dx0

= ĺım
n→∞

∫
D
1C(x0)

[∫
D

∫
D
. . .

∫
B

2n∏
k=1

p(jk − jk−1, xk−1, xk) dx2n . . . dx2 dx1

]
dx0

= ĺım
n→∞

∫
D

∫
D

∫
D
. . .

∫
D
1C(x0)

2n∏
k=1

p(t/2n, xk−1, xk)1B(x2n) dx2n . . . dx2 dx1 dx0

= ĺım
n→∞

∫
D

∫
D

∫
D
. . .

∫
D
1B(x2n)

2n∏
k=1

p(t/2n, x2n−k, x2n−(k−1))1C(x0) dx0 dx1 dx2 . . . dx2n .

Usando el cambio de variables yk = x2n−k, k = 0, 1, 2, . . . , 2n y la propiedad [p2] obtenemos que∫
C
Px{X(t) ∈ B, t ≤ τD} dx

= ĺım
n→∞

∫
D

∫
D

∫
D
. . .

∫
D
1B(y0)

2n∏
k=1

p(t/2n, yk−1, yk)1C(y2n) dy2n . . . dy2 dy1 dy0

= ĺım
n→∞

∫
D
1B(y0)

[∫
D

∫
D
. . .

∫
C

2n∏
k=1

p(jk − jk−1, yk−1, yk) dy2n . . . dy2 dy1

]
dy0

= ĺım
n→∞

∫
B
Py0{X(j1) ∈ D,X(j2) ∈ D, . . . ,X(j2n) ∈ C}dy0

=

∫
B
Px{X(t) ∈ C, t ≤ τD} dx.

Esto conluye nuestra prueba.

El siguiente resultado será sustancial en la prueba de la propiedad de Chapman-Kolmogorov.

Lema 4.3. Para cualesquiera s, t > 0, x ∈ Rd y D ⊆ Rd, la función
∫
D p(s, x, z)p(t, z, •) dz es

continua en Rd.

Demostración. Sean y ∈ Rd y (yn) una sucesión que converge a y. Definamos, para cada z ∈ Rd y
n ∈ N, f(z) := 1D(z)p(s, x, z)p(t, z, y), fn(z) := 1D(z)p(s, x, z)p(t, z, yn), g(z) := p(s, x, z)p(t, z, y),
gn(z) := p(s, x, z)p(t, z, yn). Nótese que f ≤ g, fn ≤ gn para toda n y por la propiedad de
Chapman-Kolmogorov de p(t, x, y) se sigue que

∫
Rd g(z) dz = p(s + t, x, y) < ∞ y

∫
Rd gn(z) dz =

p(s + t, x, yn) < ∞ para toda n. Pero de la propiedad [p1] obtenemos que ĺımn→∞ fn(z) = f(z) y
ĺımn→∞

∫
Rd gn(z) dz =

∫
Rd g(z) dz. La afirmación es ahora consecuencia del teorema de la conver-

gencia dominada generalizado (ver [28, p. 74, Lema 6.3]).

Nuestro próximo teorema es el principal resultado de esta sección y usamos la siguiente notación:
dado un subconjunto abierto D de Rd, δD(x) = d(x,Dc) para cada x ∈ Rd. La demostración está
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basada en las pruebas de los siguientes resultados: [15, p. 33, Teorema 2.4], [24, p. 36, Teorema
4.3], [21, p. 141, Teorema 2.4]

Teorema 4.1. Sean D ⊆ Rd un abierto y pD(t, x, y) dada por (12). La densidad de transición
pD(t, x, y) tiene las siguientes propiedades:

1. pD(t, x, y) tiene la propiedad de Chapman-Kolmogorov.

2. Para toda t > 0, pD(t, •, •) es continua en D ×D.

3. pD(t, x, y) = pD(t, y, x), t > 0, x, y ∈ D.

Demostración. 1. Del Lema 4.1.1 y [p1] se sigue que para cada t > 0 y x ∈ Rd la función
pD(t, x, •) es continua en D y aśı pD(t, x, y) ≥ 0 para toda t > 0, x ∈ Rd y y ∈ D debi-
do a que cada pD(t, x, •) es una densidad de transición. Luego, 0 ≤ pD(s, x, z)pD(t, z, y) ≤
p(s, x, z)p(t, z, y), s, t > 0, x ∈ Rd, y, z ∈ D. Usando esto, el Lema 4.3 y el teorema de la con-
vergencia dominada generalizado, puede probarse que

∫
D pD(s, x, z)pD(t, z, •) dz es continua

en D, para s, t > 0 y x ∈ Rd. El argumento es similar al de la prueba del Lema 4.3 por lo
que se omite. Por lo tanto, para probar la propiedad de Chapman-Kolmogorov, es suficiente
demostrar que para cada s, t > 0 y x, y ∈ D se tiene que

pD(s+ t, x, •) =
∫
D
pD(s, x, z)pD(t, z, •) dz, mℓ-c.d. (14)

En efecto, sean A ∈ B(D) y s, t > 0. De la propiedad terminal (ver Proposición 2.1.1 ) de τD
tenemos que {s + t < τD} = {s < τD, t < τD ◦ θs}. Luego, por la propiedad [H3] se deduce
que ∫

A
pD(s+ t, x, y) dy = Px{X(s+ t) ∈ A, s+ t < τD}

= Ex
{
PX(s){X(t) ∈ A, t < τD}; s < τD

}
=

∫
D
Pz{X(t) ∈ A, t < τD}pD(s, x, z) dz

=

∫
A

[∫
D
pD(s, x, z)pD(t, z, y) dz

]
dy.

De la arbitrariedad de A ∈ B(D), se sigue (14).

2. Comenzamos mostrando que pD(t, •, y) es continua en D para cada t > 0 y y ∈ D. Sea (xn)
una sucesión en D que converge a x ∈ D. Puesto que D es abierto, podemos elegir K ⊆ D
compacto tal que x, xn ∈ K para toda n ∈ N. Sea s ∈ (0, t). Por tanto, si h(s, x, y) es la
función del Lema 4.1.2, tenemos que

|pD(t, xn, y)− pD(t, x, y)| ≤ |pD(t, xn, y)− h(s, xn, y)|+ |pD(t, x, y)− h(s, x, y)|
+ |h(s, xn, y)− h(s, x, y)|

≤ 2 sup
x∈K

|pD(t, x, y)− h(s, x, y)|+ |h(s, xn, y)− h(s, x, y)|.

Luego, del Lema 4.1.2 se sigue que

ĺım sup
n→∞

|pD(t, xn, y)− pD(t, x, y)| ≤ 2 sup
x∈K

|pD(t, x, y)− h(s, x, y)|.
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Aśı, la continuidad de pD(t, •, y) se sigue del Lema 4.1.2 haciendo s ↓ 0. Ahora, debido a que,
como se demostró en 1., pD(t, x, •) también es continua, entonces pD(t, •, •) es continua, ya
que por la propiedad de Chapman-Kolmogorov (parte 1. de este teorema),

pD(t, x, y) =

∫
D
pD(t/2, x, z)pD(t/2, z, y) dz.

3. Puesto que D es abierto, podemos escribir que Dc = {x; δD(x) = 0}. Definamos la sucesión
creciente de conjuntos Dn := {x; δD(x) ≥ n−1} y consideremos las sucesiones de tiempos de
paro (τD◦

n
) y (τDn). Claramente (τD◦

n
) y (τDn) son sucesiones crecientes tales que τD◦

n
≤ τDn ≤

τD para toda n. Afirmamos que

ĺım
n→∞

τDn = τD, Px-c.s, x ∈ D. (15)

Para ver esto, es suficiente mostrar que ĺımn→∞ τD◦
n
= τD, Px-c.s, x ∈ D. Sea τ := ĺımn→∞ τD◦

n
.

Puesto que τ ≤ τD, (15) es inmediato sobre el evento {τ = ∞}. Debido a que τ = supn τD◦
n
,

de la Proposición 2.1.3 se sigue que X(τD◦
n
) /∈ D◦

n en el evento {τ < ∞}. Usando [H2],
la continuidad de δD(•) y lo anterior, deducimos que δD

(
X(τ)

)
= ĺımn→∞ δD

(
X(τD◦

n
)
)
≤

ĺımn→∞ n−1 = 0, y aśı X(τ) /∈ D en el evento {τ < ∞}. Este hecho y la propiedad [H4]
prueban que τ > 0, Px-c.s, x ∈ D y consecuentemente τD ≤ τ en {τ < ∞}. Esto último
concluye la prueba de (15). Utilizando ahora (15), el teorema de la convergencia monótona,
la Proposición 3.1 y el Lema 4.2 obtenemos que, para cualesquiera B,C ∈ B(D),∫

B

∫
C
pD(t, x, y) dxdy =

∫
C
Px{X(t) ∈ B, t < τD} dx

= ĺım
n→∞

∫
C
Px{X(t) ∈ B, t < τDn}dx

= ĺım
n→∞

∫
C
Px{X(t) ∈ B, t ≤ τDn}dx

= ĺım
n→∞

∫
B
Px{X(t) ∈ C, t ≤ τDn} dx

= ĺım
n→∞

∫
B
Py{X(t) ∈ C, t < τDn} dy

=

∫
B
Py{X(t) ∈ C, t < τD}dy

=

∫
B

∫
C
pD(t, y, x) dxdy.

Por lo tanto pD(t, x, y) = pD(t, y, x), mℓ⊗mℓ-c.d.q. La continuidad de cada pD(t, •, •) implica
nuestro resultado.

Puesto que τD es un tiempo de paro y la filtración es continua a la derecha (ver [16, p. 75]), la ley
cero-uno de Blumenthal nos dice que Px{τD = 0} ∈ {0, 1} para toda x ∈ Rd. Se dice que un punto
x ∈ Rd es regular para Dc cuando Px{τD = 0} = 1. El conjunto de todos los puntos regulares a
Dc es denotado por (Dc)r. Por tanto (Dc)r =

{
x ∈ Rd;Px{τD = 0

}
= 1

}
. Puede demostrarse que

(Dc)◦ ⊆ (Dc)r ⊆ Dc (ver [6, p. 62]). Se dice que el conjunto D es regular si ∂D ⊆ (Dc)r. Aśı, en
un conjunto regular, el proceso X abandona el conjunto D inmediatamente después del tiempo de
salida, siempre que inicie su movimiento en cualquier punto de la frontera.
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Suponga que D es un conjunto regular abierto. De la propiedad [H4] se deduce que Px{X(0) ∈
A} = 1A(x) para toda A ∈ B(Rd) y x ∈ Rd. Luego, si x ∈ (Dc)r, entonces

r(t, x, y) = Ex
{
p(t,X(0), y)

}
= p(t, x, y), t > 0, y ∈ Rd.

Pero Dc es cerrado, por lo que Dc = (Dc)◦ ∪ ∂D ⊆ (Dc)r ∪ ∂D = (Dc)r. La igualdad anterior y el
Teorema 4.1.3 implican que pD(t, x, y) se puede escribir de la siguiente manera:

pD(t, x, y) :=

{
p(t, x, y)− r(t, x, y), x, y ∈ D,

0, x /∈ D o bien y /∈ D.

Los conjuntos regulares son importantes en teoŕıa del potencial. Por ejemplo, se conoce que si
D es un dominio regular y f ∈ Cb(D), entonces la función u(x) = Ex

{
f
(
X(τD)

)}
, x ∈ D, resuelve

el problema de Dirichlet en el dominio D, es decir, u es armónica en D, continua en D y u|∂D = f .
La solución u puede interpretarse como el potencial electrostático en D cuando el potencial en la
frontera está dado por f ([19, p. 474]).

5. Una aplicación a la teoŕıa general de ecuaciones diferenciales
parciales

En esta sección, presentamos una aplicación anaĺıtica de la densidad de transición de Dirichlet
y sus propiedades, a la teoŕıa de ecuaciones diferenciales parciales .

Muchos procesos de reacción-difusión se pueden modelar matemáticamente mediante ecuaciones
parabólicas. La importancia de dichos modelos radica en que presentan una relación matemática
entre la tasa de variación temporal y la tasa de variación espacial de alguna magnitud f́ısica o
qúımica dependiendo del fenómeno. Un ejemplo de tales modelos es el siguiente:

∂u

∂t
(t, x) = k(t)Au(t, x) + h(t)R

(
u(t, x)

)
, t > 0, x ∈ D,

u(0, x) = f(x), x ∈ D, u |Dc= 0,
(16)

donde D es un domino acotado de Rd, [0,∞) ∋ t 7→ k(t) ∈ [0,∞), [0,∞) ∋ t 7→ h(t) ∈ [0,∞) son
continuas, [0,∞) ∋ u 7→ R(u) ∈ [0,∞) es localmente Lipchitz, A es un operador de difusión y la
condición inicial f ∈ Dom(A) es no negativa.

Por ejemplo, cuando k(t) ≡ k > 0, A = ∆|D y h ≡ 0, el problema anterior se tranforma
en el problema lineal clásico del calor con condición de frontera. Un modelo no lineal y quizás
poco conocido entre lectores matemáticos, es el modelo de Frank-Kamenetzky (adimensional), es
decir, cuando k(t) ≡ 1, A = ∆|D, h(t) ≡ δ > 0, R(u) = eu y f ≡ 0. La constante adimensional
(llamada constante de Frank-Kamenetzky) es importante porque depende de muchos parámetros,
por ejemplo, la densidad del material y su difusividad térmica. El modelo de Frank-Kamenetzky
describe como evoluciona con el tiempo la temperatura de un material combustible, que fue sometido
a un proceso de ignición inicial y cuya temperatura externa es constante. Para más detalles ver [5]
y las referencias alĺı dadas. Sin embargo, este operador de difusión podŕıa ser más general como
hemos visto en los Ejemplos 2.1, 2.2 y 2.3.

De la teoŕıa de semigrupos se conoce que la solución u del problema de Cauchy (16), puede ser
expresada en términos del sistema de evolución asociado al generador no autónomo k(t)A. Veremos
a continuación como la densidad de transición de Dirichlet pD(t, x, y) permite construir este sistema
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de evolución. Por esta razón, en la literatura de ecuaciones diferenciales parciales, se conoce a la
densidad de transición de Dirichlet pD(t, x, y) como kernel de calor de Dirichlet.

En lo que sigue suponemos que D es abierto, Dom(A) ⊆ L2(D) y denotamos por ⟨f, g⟩ a la
integral

∫
D f(x)g(x) dx. Recuerde que L2(D) es un espacio de Hilbert respecto al producto interno

⟨•, •⟩.
Para cada f ∈ L∞(D), definamos

SD(t)f(x) :=

∫
D
f(y)pD(t, x, y) dy, t > 0, x ∈ D

y sea SD(0)f(x) := f(x), x ∈ D. La familia de operadores
(
SD(t); t ≥ 0

)
forma un semigrupo

fuertemente continuo en L2(D). Sin embargo, para demostrar esto, acorde con el Lema 1.4.3 en [18,
p. 30], necesitamos el siguiente resultado preliminar.

Lema 5.1. Para cada f ∈ Cc(D) se tiene que ĺımt↓0 SD(t)f(x) = f(x), x ∈ D.

Demostración. Es bien conocido que toda función en Cc(D) es uniformemente continua, por lo que,
si ωf (δ) = sup{|f(x) − f(y)|; |x − y| ≤ δ}, entonces ĺımδ↓0 ωf (δ) = 0. Sean δ > 0 y x ∈ D. Nótese
que

|SD(t)f(x)− f(x)| = |SD(t)f(x)− f(x)Px{t < τD}+ f(x)Px{t < τD} − f(x)|

≤
∫
D
|f(x)− f(y)|pD(t, x, y) dy + ∥f∥∞Px{τD ≤ t}

≤ ωf (δ) + 2∥f∥∞Ex
{
1(−δ,δ)c

(
X(t)−X(0)

)
;X(0) = x

}
+ ∥f∥∞Px{τD ≤ t},

donde hemos usado [H4] en la última desigualdad. Debido a la propiedad [H1] y a la Proposición
2.1.2 se sigue que

ĺım sup
t↓0

|SD(t)f(x)− f(x)| ≤ ωf (δ).

Haciendo δ ↓ 0 se obtiene la prueba de este lema.

Teorema 5.1. La familia de operadores
(
SD(t); t ≥ 0

)
forma un semigrupo auto-adjunto de con-

tracciones fuertemente continuo en L2(D).

Demostración. Veamos primero que
(
SD(t); t ≥ 0

)
tiene la propiedad de semigrupo. En efecto, sean

f ∈ L2(D) y s, t ≥ 0. Usando la propiedad de Chapman-Kolmogorov (ver Teorema 4.1.1 )

SD(s+ t)f(x) =

∫
D
f(u)

[∫
D
pD(s, x, z)pD(t, z, u) dz

]
du

=

∫
D

[∫
D
f(u)(t, z, u) du

]
pD(s, x, z) dz

=

∫
D
SD(t)f(z)pD(s, x, z) dz

= SD(s)SD(t)f(x),
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lo cual muestra nuestra afirmación. Probamos ahora que cada SD(t) es auto-adjunto. Sean f, g ∈
L2(D) y t ≥ 0. Entonces aplicando el Teorema 4.1.3, se sigue que

⟨SD(t)f, g⟩ =
∫
D

[∫
D
f(y)pD(t, x, y) dy

]
g(x) dx

=

∫
D
f(y)

[∫
D
g(x)pD(t, y, x) dx

]
dy

= ⟨f, SD(t)g⟩.

A continuación mostramos que cada SD(t) es un operador de contracción en L2(D). Hemos visto
que cada pD(t, x, •) es una densidad de transición. Aplicando la desigualdad de Cauchy-Schwarz
con respecto a la medida pD(t, x, y) dy, el hecho de que cada SD(t) es un operador auto-adjunto,
la propiedad de semigrupo y que pD(t, x, y) ≤ p(t, x, y) obtenemos que

∥SD(t)f∥2 ≤
√
⟨SD(t)1, SD(t)|f |2⟩

=
√
⟨SD(t)SD(t)1, |f |2⟩

=
√
⟨SD(2t)1, |f |2⟩

≤ ∥f∥2,

como se afirmaba. Finalmente mostramos que
(
SD(t); t ≥ 0

)
es fuertemente continuo en L2(D). Lo

anterior es consecuencia inmediata de [18, p. 30, Lema 1.4.3] y el hecho de que Cc(D) es denso en
L2(D). Sin embargo, presentaremos con detalle la prueba de esta afirmación. En efecto, puesto que
cada SD(t) es una contracción en L2(D), se tiene que

∥SD(t)f − f∥22 ≤ 2∥f∥22 − 2⟨SD(t)f, f⟩, f ∈ L2(D).

Se sigue de esto, el Lema 5.1 y el teorema de la convergencia dominada que

ĺım
t↓0

∥SD(t)f − f∥2 = 0, f ∈ Cc(D). (17)

Sea f ∈ L2(D). Debido a la densidad de Cc(D) en L2(D), para cada ε > 0 podemos fijar fε ∈ Cc(D)
tal que ∥f−fε∥2 ≤ ε/2. Usando nuevamente que cada SD(t) es una contracción en L2(D) se deduce
que ∥SD(t)f − f∥2 ≤ ε+ ∥SD(t)fε − fε∥2. Luego, de (17) concluimos que

ĺım sup
t↓0

∥SD(t)f − f∥2 ≤ ε.

La arbitrariedad de ε > 0 muestra el resultado y consecuentemente finaliza la demostración.

Veamos ahora como el semigrupo permite obtener una expresión de la solución u de (16).
Para esta parte es suficiente tener presente las propiedades básicas de semigrupos de operado-
res y sus generadores (ver por ejemplo [25, Caṕıtulo 1]). Sean K(t, s) :=

∫ t
s k(r) dr, t, s ≥ 0 y

U(t, s)f := S
(
K(t, s)

)
f , f ∈ L∞(D). Del Teorema 5.1, es inmediato que

(
UD(t, s); t ≥ s ≥ 0

)
es un

sistema de evolución (ver [25, Definición 5.3, p. 129]) de contracciones en L2(D). Es fácil ver que si
v ∈ Dom(A), donde A es el generador inifinitesimal

(
SD(t); t ≥ 0

)
, entonces

∂

∂t
UD(t, s)v(t, x) = k(t)AUD(t, s)v(t, x)

y
∂

∂s
UD(t, s)v(s, x) = −UD(t, s)k(s)Av(s, x). (18)
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Sea u una solución (clásica) de (16) y sea v(t, x) := UD(t, s)u(s, x), s ∈ [0, t], x ∈ D. Luego,

u(t, x) = UD(t, 0)f(x) + v(t, x)− v(0, x)

= UD(t, 0)f(x) +

∫ t

0

∂v

∂s
(s, x) ds

= UD(t, 0)f(x) +

∫ t

0

[
−UD(t, s)k(s)Au(s, x) + UD(t, s)

∂u

∂s
(s, x)

]
ds,

donde hemos usado (18) en la última igualdad. Puesto que u satisface (16) concluimos de lo anterior
que u satisface la ecuación integral

u(t, x) = UD(t, 0)f(x) +

∫ t

0
h(s)UD(t, s)R

(
u(s, x)

)
ds, t ≥ 0, x ∈ D. (19)

Cualquier solución de la ecuación integral (19) se le llama solución mild de (16). Nótese que si
pD(s, x, t, y) := pD

(
K(t, s), x, y

)
, t ≥ s ≥ 0, x, y ∈ Rd, entonces (19) queda expresada de la siguiente

manera:

u(t, x) =

∫
D
f(y)pD(s, x, t, y) dy +

∫ t

0

∫
D
h(s)R

(
u(s, y)

)
pD(s, x, t, y) dyds t ≥ 0, x ∈ D.

Por tanto conocer propiedades y estimaciones del kernel de calor de Dirichlet pD(t, x, y), permite
entender el comportamiento de la solución mild.

La importancia de la solución mild radica en que ha permitido obtener descripciones cualitita-
tivas del comportamiento asintótico de la solución u del modelo (16). Por ejemplo, se conoce que
la solución u del problema (16) podŕıa manifestar el fenómeno de explosión en tiempo finito,
el cual se presenta cuando el valor de la solución diverge a infinito tras un cierto intervalo de
existencia. Espećıficamente, se dice que u explota en un tiempo finito te > 0 si

ĺım
t↑te

∥u(t, ·)∥∞ = ∞.

En caso contrario se dice que u no explota en tiempo finito o que está globalmente definida.
Determinar bajo que condiciones ocurre este fenómeno se llama estudio de la explosión. Como
hemos visto, toda solución (clásica) de (16), es una solución mild. Luego, realizar un estudio de
la explosión de la solución mild implica determinar bajo que condiciones ocurre o no ocurre la
explosión en tiempo finito de la solución de (16). Esta idea ha sido explotada desde hace años por
diferentes autores como puede ser consultado en [8, 9, 10, 22, 23] y las referencias dadas en dichos
trabajos.

6. Conclusiones

En este trabajo se han presentado demostraciones de propiedades elementales del kernel de calor
de Dirichlet para una clase bastante general de procesos de Markov simétricos. Como fue expuesto
en los ejemplos, esta clase incluye procesos cuyos generadores asociados surgen en varios modelos
matemáticos. El estudio del comportamiento asintótico de soluciones de modelos con condiciones
de frontera de Dirichlet de la forma (16), depende del conocimiento de las propiedades del kernel
de calor de Dirichlet, el cual posee una forma general no trivial (véase (12)).

En la actualidad no existen muchas fuentes bibliográficas que presenten demostraciones detalla-
das de las propiedades básicas del kernel de calor de Dirichlet para procesos de Markov simétricos
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discontinuos y las que existen se basan en estimaciones del kernel de calor del proceso de Markov
simétrico dado. De aqúı, la importancia de la difusión de tales pruebas, ya que también demues-
tran la trascendecia de las técnicas probabilistas en el estudio de un objeto matemático con tal
generalidad.

7. Agradecimientos
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Resumen

Este trabajo ofrece una reconstrucción detallada y conceptualmente clara de la deducción de
Feynman de las ecuaciones de Maxwell, basada en la segunda ley de Newton y en el uso de corchetes
de Poisson entre coordenadas y velocidades en un espacio eucĺıdeo. Aunque motivado pedagógi-
camente, nuestro enfoque es rigurosamente técnico y clarifica los supuestos fundamentales que
subyacen tanto en la deducción original como en su extensión relativista. Comenzamos revisando
la ley de la fuerza de Lorentz en un marco eucĺıdeo clásico, para luego reformularla de manera
covariante utilizando el cálculo tensorial en el espacio de Minkowski, incorporando la prescripción
de acoplamiento mı́nimo tal como fue establecida formalmente por Montesinos y Perez-Lorenzana.
Su contribución permite reconciliar la prueba de Feynman con una aplicación general y sistemática
del principio de acoplamiento mı́nimo.

Palabras claves: Ecuaciones de Maxwell, Corchetes de Poisson, Prueba de Feyman-Dayson, Aco-
plamiento mı́nimo.

Abstract

This work offers a detailed and conceptually transparent reconstruction of Feynman’s deriva-
tion of Maxwell’s equations, based on Newton’s second law and the use of Poisson brackets bet-
ween coordinates and velocities in Euclidean space. While pedagogically motivated, our approach
is technically rigorous and clarifies the foundational assumptions underlying both the original and
relativistic versions of the derivation. We begin by revisiting the Lorentz force law in a classi-
cal Euclidean framework and then reformulate it covariantly using Minkowskian tensor calculus,
incorporating the minimal coupling prescription as formally established by Montesinos and Perez-
Lorenzana. Their contribution highlights how Feynman’s proof can be reconciled with a general
and systematic application of the minimal coupling principle.

Keywords:Maxwell’s equations, Poisson brackets, Feynman-Dyson proof, Minimal coupling.
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1. Introducción

La demostración de las ecuaciones de Maxwell a partir de principios mecánico-cuánticos, origi-
nalmente atribuida a Richard Feynman y difundida por Freeman J. Dyson en 1989 [1], representa
un enfoque novedoso para conectar la dinámica de part́ıculas con la teoŕıa electromagnética clási-
ca. En su trabajo, Dyson mostró que, partiendo de la segunda ley de Newton y las relaciones de
conmutación canónica, era posible derivar las ecuaciones fundamentales que gobiernan los cam-
pos eléctricos y magnéticos, aśı como la fuerza de Lorentz que actúa sobre part́ıculas cargadas.
Este planteamiento abrió un nuevo camino para entender la teoŕıa electromagnética desde una
perspectiva basada en principios mecánicos subyacentes.

El impacto de esta demostración generó múltiples discusiones cŕıticas y extensiones en la li-
teratura cient́ıfica. Por un lado, autores como Farquhar [3], Dombey [7] y Moreira [8] señalaron
limitaciones conceptuales y técnicas, particularmente en cuanto a la justificación de ciertos su-
puestos impĺıcitos, como la estructura espacio-temporal y la dependencia de postulados espećıficos
de la mecánica cuántica. Estas cŕıticas fomentaron un análisis más riguroso y una búsqueda de
condiciones en las que el argumento fuese válido.

Paralelamente, otros investigadores profundizaron en la generalización y formalización del méto-
do. Tanimura [4] realizó una extensión relativista y adaptó el esquema a teoŕıas de gauge no abe-
lianas, utilizando herramientas avanzadas del formalismo de operadores y la teoŕıa cuántica de
campos. Land, Shnerb y Horwitz [5] exploraron la conexión del enfoque de Feynman con los funda-
mentos de la teoŕıa de gauge, destacando la importancia de las estructuras algebraicas y geométricas
involucradas. Más recientemente, Montesinos y Pérez-Lorenzana [6] reformularon la demostración
desde el principio de acoplamiento mı́nimo, clarificando el papel de la simetŕıa gauge y la covarianza
en la deducción de las ecuaciones de Maxwell.

Adicionalmente, investigaciones como la de Vaidya y Farina [2] cuestionaron la coexistencia
coherente de las ecuaciones de Maxwell con la mecánica galileana, poniendo en evidencia la nece-
sidad de la relatividad especial para un marco conceptual consistente. En un plano más formal,
Bracken [9] estudió la estructura de corchetes de Poisson asociada al problema de Feynman, evi-
denciando v́ınculos profundos entre la formulación clásica y la cuántica, aśı como la geometŕıa
simpléctica subyacente.

En conjunto, estos trabajos han consolidado y enriquecido la comprensión del enfoque de
Feynman-Dyson, situándolo como un puente conceptual importante entre la mecánica, la teoŕıa
de gauge y el electromagnetismo clásico, además de ofrecer nuevas perspectivas para su generaliza-
ción a contextos relativistas y no abelianos.

Este trabajo presenta una reconstrucción sistemática y conceptualmente rigurosa de la deduc-
ción de las ecuaciones de Maxwell basada en principios mecánicos y geométricos, originalmente
propuesta por Feynman. Aunque el enfoque tiene un esṕıritu pedagógico, se desarrolla con detalle
técnico y busca clarificar los supuestos fundamentales que subyacen en el argumento original de
Feynman y en sus extensiones relativistas y geométricas. Se revisa primero la deducción de la fuer-
za de Lorentz a partir de los corchetes de Poisson en un espacio eucĺıdeo, y luego se reformula de
manera covariante utilizando un formalismo tensorial compatible con la geometŕıa de Minkowski.

Este art́ıculo se organiza de la siguiente manera: en la Sección 2 se revisa el procedimiento de
Feynman-Dyson para deducir la forma de la fuerza de Lorentz y de las ecuaciones homogéneas.
En la Sección 3 se presenta la extensión relativista de este enfoque en el espacio-tiempo plano de
Minkowski, enfatizando el papel del tensor electromagnético y de los corchetes covariantes. En la
sección 4 se introducen las ecuaciones inhomogéneas de Maxwell prestando especial atención al
concepto del acoplamiento mı́nimo. Mientras que finalmente, en la sección 5 se presentan algunas
observaciones y posibles direcciones futuras de investigación.
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2. Deducción de Feynman-Dyson de las ecuaciones de Maxwell.

El procedimiento propuesto por Feynman y presentado por Dyson [1] parte de una hipótesis
central: asumir que existen corchetes de Poisson bien definidos entre las posiciones xi y las velo-
cidades ẋi de una part́ıcula en un espacio eucĺıdeo tridimensional, con las siguientes propiedades
fundamentales

[xi, xj ] = 0, (1)

m[xi, ẋj ] = iℏδij . (2)

donde m es la masa de la part́ıcula y δij es la delta de Kronecker, que vale 1 si i = j y 0 si i ̸= j.
Estas relaciones son análogas a las relaciones de conmutación canónicas en mecánica cuántica, con
la diferencia de que se plantean en un marco clásico mediante corchetes de Poisson.

A partir de la segunda ley de Newton

mẍi = Fi(x, ẋ, t). (3)

y combinando esta relación con otras propiedades de los corchetes (ver apéndice), aśı como
utilizando las reglas introducidas anteriormente (1)-(2), podemos deducir las siguientes expresiones

[xi, f(xj)] = 0, (4)

lo que indica que la posición conmuta con cualquier función de posición, y también

[xi, f(ẋj)] =
iℏ
m

∂f

∂ẋi
, (5)

que nos muestra cómo la posición se relaciona con funciones de velocidad, y

[ẋi, f(xj)] = − iℏ
m

∂f

∂xi
. (6)

que indica la relación inversa para la velocidad con funciones de posición. Estas expresiones
serán muy importantes para los cálculos que haremos.

2.1. Fuerza de Lorentz.

A partir de la segunda ley de Newton (3), queremos deducir la forma de Fi. Para ello, diferen-
ciamos en el tiempo el corchete de la ecuación (2)

m
d

dt
[xi, ẋj ] = m [ẋi, ẋj ] +m [xi, ẍj ] =

d

dt
(iℏδij) = 0. (7)

Recordando que, la fuerza está dada por (3), sustituimos esta expresión en (7), obteniendo

m [ẋi, ẋj ] = −[xi, Fj ]. (8)

Interpretación: la no conmutatividad entre las velocidades introduce un término proporcional a
[xi, Fj ], el cual, debido a la propiedad de antisimetŕıa del corchete de Poisson, satisface la relación

[xi, Fj ] = −[xj , Fi]. (9)
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Esto indica que dicho término posee una estructura antisimétrica en los ı́ndices espaciales. Para
capturar esta caracteŕıstica de manera expĺıcita, resulta natural introducir un nuevo campo anti-
simétrico, el cual puede, en principio, depender tanto de las coordenadas como de las velocidades.
Para capturar de manera general esta estructura, introducimos un nuevo campo antisimétrico Mij ,
y suponemos que existe una constante de proporcionalidad a tal que

[xi, Fj ] = aMij . (10)

Donde sea Mij una matriz antisimétrica de 3× 3

Mij =

 0 M12 M13

M21 0 M23

M31 M32 0.

 (11)

La constante a se introduce como un factor dimensional que permite mantener general la rela-
ción entre el conmutador (10) y (11), facilitando su identificación posterior con cantidades f́ısicas
conocidas. Este enfoque también permite que a absorba posibles factores constantes que surjan en
el cálculo, y será determinado más adelante al comparar expresiones expĺıcitas para el conmutador.

Definimos ahora un vector Hk tal que

Mij =

 0 ϵ123H3 ϵ132H2

ϵ213H3 0 ϵ231H1

ϵ312H2 ϵ321H1 0

 =

 0 H3 −H2

−H3 0 H1

H2 −H1 0

 (12)

Esto nos permite escribir:

Mij = ϵijkHk. (13)

Por lo tanto, se puede expresar
[xi, Fj ] = aϵijkHk. (14)

Utilizando los resultados anteriores, en particular la ecuación (5), podemos reescribir la ecuación
(14) como

[xi, Fj ] =
iℏ
m

∂Fj

∂ẋi
= aϵijkHk, (15)

de donde se obtiene

∂Fj

∂ẋi
=
m

iℏ
aϵijkHk. (16)

Cambiando el ı́ndice j por i en (16) y multiplicando por dẋl

∂Fi

∂ẋl
dẋl =

m

iℏ
aϵlikHkdẋl, (17)

dFi =
m

iℏ
aϵlikHkdẋl, (18)

renombrando el ı́ndice (l → j) en (18)

dFi =
m

iℏ
aϵjikHkdẋj . (19)

Integrando esta relación con respecto a ẋj
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Fi =
m

iℏ
aϵjikHkẋj + Ci(x, t), (20)

y ajustando la constante a = − iℏ
m . Este valor de a no solo ajusta la dimensión correcta de la

relación, sino que también garantiza que la fuerza Fi adopte la forma esperada

Fi = −ϵjikHkẋj + Ci. (21)

La determinación de la constante a queda plenamente justificada, tanto dimensional como con-
ceptualmente, habilitando la identificación de los campos f́ısicos Ei(x, t) y Hi(x, t). Al identificar
Ci(x, t) = Ei(x, t), la fuerza adquiere la forma

Fi = Ei + ϵijkẋjHk. (22)

que coincide con la ley de Lorentz. De esta manera, queda establecido que Ei y Hi on los campos
que rigen la dinámica de una carga sometida a interacciones electromagnéticas según las relaciones
de conmutación.

2.2. Divergencia del campo magnético.

Continuando con las deducciones, ahora abordamos la inexistencia del monopolo magnético.
Para ello, retomemos la ecuación (15)

[xi, Fj ] = − iℏ
m
ϵijkHk. (23)

Esta expresión es fundamental y constituirá el punto de partida para los desarrollos posteriores.
Si ahora calculamos el conmutador de (23) con xk, se obtiene

[xk, [xi, Fj ]] = − iℏ
m
ϵijl[xk, Hl]. (24)

Aplicando la identidad de Jacobi1, tenemos

[xi, [ẋj , ẋk]] + [ẋj , [ẋk, xi]] + [ẋk, [xi, ẋj ]] = 0. (25)

Observando el tercer término en (25), notamos su similitud con la ecuación (2). Aplicando el
conmutador con ẋk al lado izquierdo de (2), se obtiene

[ẋk, [xi, ẋj ]] = [ẋk,
1

m
iℏδij ] = 0. (26)

De manera análoga, el segundo término de la identidad de Jacobi resulta ser 0. Esto deja
únicamente el primer término

[xi, [ẋj , ẋk]] = 0, (27)

resultado que será fundamental para las interpretaciones f́ısicas posteriores.

Recordando la ecuación (8), podemos conmutarla con xk para obtener

[xi, [xjFk] = −m[xi, [ẋj , ẋk]] = 0. (28)

Este resultado puede sustituirse directamente en la ecuación (24), lo que nos lleva a

1[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.
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[xi, [xj , Fk]] = − iℏ
m
ϵjkl[xi, Hl] = 0. (29)

De aqúı se deduce que
[xi, Hl] = 0. (30)

Lo que significa que H es una función solo de x y t.
Otro resultado útil para nuestra demostración se obtiene al sustituir la forma propuesta para

la fuerza de Lorentz en la ecuación (23)

[xi, Ej + ϵjlkẋlHk] = − iℏ
m
ϵijkHk. (31)

Aplicando la propiedad de linealidad del conmutador (ver apéndice), la ecuación anterior se
reescribe como

[xi, Ej ] + [xi, ϵjlkẋlHk] = − iℏ
m
ϵijkHk. (32)

Analizando el segundo término del lado izquierdo en (32), aplicamos nuevamente la linealidad

ϵjlk[xi, ẋlHk] = ϵjlk ([xi, ẋl]Hk + [xi, Hk]ẋl) . (33)

De acuerdo con (30), sabemos que [xi, Hk] = 0, por lo que el segundo término en (33) desaparece,
con lo que queda

ϵjlk[xi, ẋlHk] = ϵjlk[xi, ẋl]Hk. (34)

Sustituyendo ahora (2) en la expresión anterior, se obtiene

ϵjlk[xi, ẋlHk] = ϵjlk

(
iℏ
m
δil

)
Hk = ϵjik

iℏ
m
Hk. (35)

Sustituyendo en (32) los resultado de 35, obtenemos

[xi, Ej ] + ϵjik
iℏ
m
Hk = − iℏ

m
ϵijkHk. (36)

obtenemos
Sustituyendo este resultado en (31), obtenemos

[xi, Ej ] = 0, (37)

lo que indica que el campo eléctrico E también depende únicamente de x y t.
Regresando a la ecuación (23), la reescribimos como

m[ẋi, ẋj ] =
iℏ
m
ϵijkHk. (38)

multiplicando (38) en ambos lados por ϵijl, se obtiene

ϵijkϵijlHk =
m2

iℏ
ϵijl[ẋi, ẋj ], (39)

2δlkHk =
m2

iℏ
ϵijl[ẋi, ẋj ], (40)

Hl =
m2

2iℏ
ϵijl[ẋi, ẋj ] (41)
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Si ahora conmutamos (41) con ẋk

[ẋk, Hk] = − im
2

2ℏ
ϵijk[xk, [ẋi, ẋj ]]. (42)

Nuevamente, aplicando la identidad de Jacobi

[xk, [ẋi, ẋj ]] = 0, (43)

lo que finalmente implica
[ẋk, Hk] = 0. (44)

Según la expresión (6), este conmutador se interpreta como

∇ · H⃗ = 0, (45)

es decir, la ecuación de Maxwell para la divergencia del campo magnético, lo cual completa
la demostración de la inexistencia del monopolo magnético.

2.3. Ley de Faraday.

Para facilitar el desarrollo de los cálculos, partimos directamente de la ecuación (41). Si deriva-
mos esta expresión con respecto al tiempo, obtenemos

d

dt
Hk = − im

2

2ℏ
ϵijk

d

dt
[ẋi, ẋj ]. (46)

Sabemos que, por definición, el lado izquierdo de la ecuación se puede expresar como

d

dt
Hk =

∂Hk

∂t
+ ẋm

∂Hk

∂xm
. (47)

Ahora nos enfocamos en el lado derecho de la ecuación (46). Utilizando la relación entre la
aceleración y la fuerza, se tiene:

− im
2

2ℏ
ϵijk

d

dt
[ẋi, ẋj ] = − im

ℏ
ϵijk[Fi, ẋj ]. (48)

Sustituyendo la expresión de la fuerza de Lorentz (22), se obtiene:

− im
ℏ
ϵijk[Fi, ẋj] = − im

ℏ
ϵijk[Ei + ϵimnẋmHn, ẋj ]. (49)

Analizando únicamente el lado derecho de la ecuación anterior, y aplicando las propiedades del
conmutador, se llega a

− im
ℏ
ϵijk[Ei + ϵimnẋmHn, ẋj ] = − im

ℏ
ϵijk[Ei, ẋj ]−

im

2ℏ
ϵijkϵimn[ẋmHn, ẋj ]. (50)

Aplicando la regla de Leibniz II (indicada en el apéndice como ecuación 112), y simplificando
los términos, podemos escribir:

− im
ℏ
ϵijk[Ei + ϵimnẋmHn, ẋj] = −ϵijk

∂Ek

∂xj
+ ẋj

∂Hk

∂xj
− ẋk

∂Hj

∂xj
. (51)

Sustituyendo las expresiones de los lados izquierdo y derecho en la ecuación (46), se obtiene:
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∂Hk

∂t
+ ẋm

∂Hk

∂xm
= −ϵijk

∂Ek

∂xj
+ ẋj

∂Hk

∂xj
− ẋk

∂Hj

∂xj
. (52)

De acuerdo con las propiedades deducidas en secciones anteriores, sabemos que el tercer término
del lado derecho se cancela debido a imponer la ecuación (45). Además, los segundos términos de
ambos lados de la ecuación (52) se anulan. Por lo tanto, queda la siguiente igualdad

∂Hk

∂t
= −ϵijk

∂Ek

∂xj
. (53)

Esta expresión es equivalente a:

∂H⃗

∂t
+∇× E⃗ = 0, (54)

que corresponde a la Ley de Faraday, como se queŕıa demostrar.

3. Formulación relativista especial.

Tomando en cuenta que previamente hemos deducido las dos ecuaciones homogéneas de Maxwell
utilizando de manera expĺıcita la versión galileana de la ley de Lorentz en combinación con una
estructura cuántica basada en los corchetes de Poisson, es decir, una formulación que entrelaza
las descripciones clásica y cuántica como en la prueba de Feynman [2], [3], surge ahora una nueva
consideración. Al trabajar en un espacio plano de naturaleza clásica, una de las debilidades de dicha
derivación es la ausencia de covarianza de Lorentz de forma manifiesta. Por este motivo, resulta
natural proponer una versión relativista especial del mismo razonamiento [4], [5].

Consideremos entonces una part́ıcula relativista de masa en reposo m en un marco inercial,
sometida a una fuerza externa tal que su momento generalizado satisface la regla de acoplamiento
mı́nimo. Siguiendo el desarrollo detallado presentado en [6], partimos de una part́ıcula que se mueve
en un espacio-tiempo de Minkowski, cuyas coordenadas describimos como

xµ(τ), µ = 0, 1, ..., d− 1, (55)

donde τ es un parámetro.
El momento canónico incorpora la contribución del campo electromagnético a través del potencial
Aµ, lo que nos permite escribir

πµ = mẋµ +Aµ(x, π). (56)

Establecemos ahora la notación para las derivadas respecto al tiempo propio τ y las coordenadas
canónicas de una función f(x, π) en el espacio de fases

ḟ ≡ df

dτ
, ∂µ ≡ ∂

∂xµ
, ∂̄µ ≡ ∂

∂πµ
. (57)

El corchete de Poisson en su formulación relativista toma la forma

{f, g} ≡ ηρσ

(
∂f

∂xρ
∂g

∂πσ
− ∂g

∂xρ
∂f

∂πσ

)
= ηρσ(∂

ρf∂̄σg − ∂ρg∂̄σf). (58)

Gracias a la presencia expĺıcita de la métrica de Minkowski ηρσ, este corchete es covariante bajo
transformaciones de Lorentz, propiedad fundamental que lo distingue del caso galileano.
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Con todo lo anterior establecido, procedamos a calcular el corchete {xµ, ẋν}. Para ello, partimos
del despeje de la velocidad a partir de la expresión del momento canónico

ẋν =
1

m
(πν −Aν(x, π)). (59)

Al aplicar el corchete con xν , se obtiene

{xµ, ẋν} =
1

m
({xµ, πν} − {xµ, Aν(x, π)}). (60)

Utilizando la definición del corchete relativista antes introducida, llegamos a la expresión

m{xµ, ẋν} = ηµν −
∂Aν

∂πµ
. (61)

Este resultado es análogo al caso no relativista (2), pero revela cómo la estructura métrica de
Minkowski y la dependencia del potencial en el momento modifican la dinámica.

3.1. Fuerza de Lorentz Relativista.

Una observación crucial es que de la expresión (55) podemos empezar a esbozar la presencia de
una fuerza. Derivando esta expresión con respecto al parámetro af́ın τ , se obtiene

F ν = (π̇ν −
d

dτ
Aν(x, π)). (62)

Para avanzar en la derivación, diferenciamos la ecuación (61) respecto a τ

m
d

dτ
{xµ, ẋν} =

d

dτ
(ηµν −

∂Aν

∂πµ
). (63)

donde aplicamos la regla de Leibniz al corchete de Poisson

m{ẋµ, ẋν}+m{xµ, ẍν} =
d

dτ
(
∂Aν

∂πµ
). (64)

Reorganizando términos

m{xµ, ẍν} = −m{ẋµ, ẋν}+
d

dτ
(
∂Aν

∂πµ
). (65)

Este resultado vincula la variación de la aceleración con los corchetes de velocidad y la evolución
del potencial. A continuación, evaluamos el corchete {ẋµ, ẋν} utilizando la expresión (59)

{ẋµ, ẋν} =
1

m2
({πµ, πν} − {Aµ, πν} − {πµ, Aν}+ {Aµ, Aν}) . (66)

Dado que {πµ, πν} = 0 por ser canónicamente conjugadas a xµ, esta contribución se anula. Por
tanto

{ẋµ, ẋν} =
1

m2
(−{Aµ, πν} − {πµ, Aν}+ {Aµ, Aν}) . (67)

Evaluamos ahora cada término por separado mediante la definición del corchete de Poisson

{Aµ, πν} = ηρσ
(
∂Aµ

∂xρ
∂πν

∂πσ
− ∂πν

∂xρ
∂Aµ

∂πσ

)
, (68)
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lo que simplifica a

{Aµ, πν} =
∂Aµ

∂xν
, (69)

y, por antisimetŕıa,

{πµ, Aν} = −∂A
ν

∂xµ
. (70)

El último término se calcula como

{Aµ, Aν} = ηρσ
(
∂Aµ

∂xρ
∂Aν

∂πσ
− (µ↔ ν)

)
. (71)

Sustituyendo estos resultados en (66), obtenemos

{ẋµ, ẋν} =
1

m2
(∂µAν − ∂νAµ + {Aµ, Aν}) , (72)

donde es natural reconocer la estructura del tensor de campo gauge

Fµν = ∂µAν − ∂νAµ + {Aµ, Aν}. (73)

Sustituyendo esta expresión en (65), resulta

m{xµ, ẍν} =
1

m
Fµν +

d

dτ

(
∂Aν

∂πµ

)
. (74)

Multiplicando ambos lados por m y contrayendo con ẋν , se obtiene

m2{xµ, ẍν}ẋν = Fµν ẋ
ν +

d

dτ

(
∂Aν

∂πµ

)
ẋν . (75)

Lo cual nos permite identificar

mẍµ = Fµν ẋ
ν +

d

dτ

(
∂Aν

∂πµ

)
ẋν . (76)

A partir de la ecuación (59), reconocemos

Fµ = Fµ
ν ẋ

ν +
d

dτ

(
∂Aν

∂πµ

)
ẋν . (77)

Definimos entonces el término adicional como

Gµ(x) =
d

dτ

(
∂Aν

∂πµ

)
ẋν , (78)

lo que nos permite expresar la fuerza total como

Fµ = Fµ
ν ẋ

ν +Gµ(x), (79)

una generalización relativista de la fuerza de Lorentz, donde los dos términos satisfacen las
siguientes condiciones de consistencia

∂µGν − ∂νGµ = 0, (80)
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∂µFνρ + ∂νFρµ + ∂ρFµν = 0, (81)

lo que implica la existencia de un campo escalar ϕ(x) y un campo vectorial Aµ(x) tales que

Gµ = ∂µϕ, (82)

Fµν = ∂µAν − ∂νAµ. (83)

Los resultados obtenidos en esta sección revelan de forma expĺıcita cómo se manifiesta una fuerza
tipo Lorentz en el contexto relativista, partiendo de la estructura del formalismo hamiltoniano con
variables extendidas. En particular, la derivación del tensor de campo Fµν , que incorpora tanto los
derivados del potencial como los corchetes de Poisson entre componentes del mismo, muestra la
generalización natural de la fuerza electromagnética en este marco teórico.

La ecuación de movimiento (79), identifica dos contribuciones a la fuerza: una directamente
asociada al tensor de campo Fµν y otra representada por Gµ(x), un término derivado del potencial
que puede interpretarse como un gradiente de un campo escalar. Esta forma generalizada de la
fuerza de Lorentz permite una descripción unificada de interacciones gauge y campos adicionales
en contextos más amplios, como los que aparecen en teoŕıas efectivas o formulaciones no canónicas.

Finalmente, la imposición de condiciones sobre los tensores Fµν y Gµ, dadas por las ecuaciones
(80) y (81), garantiza la existencia de funciones potenciales Aµ(x) y ϕ(x), reforzando la consistencia
interna del modelo. Este resultado es fundamental, ya que establece un v́ınculo directo entre la
dinámica del sistema y la geometŕıa de los campos que lo gobiernan.

3.2. Ecuaciones Homogéneas de Maxwell.

Con base en la sección anterior, podemos escribir la siguiente expresión:

Fµν = −m{ẋµ, ẋν} = {xµ, Fν}+
d

dτ

(
∂Aν

∂πµ

)
. (84)

Utilizando la identidad de Jacobi en términos de los momentos, tenemos:

{xν , {πµ, πρ}}+ {πµ, {πρ, xν}}+ {πρ, {xν , πµ}} = 0. (85)

Desarrollando y haciendo una relación con las coordenadas:

m{ẋµ, ẋν} = −{ẋµ, Aν} − {Aµ, ẋν} −
1

m
{Aµ, Aν}. (86)

Ahora destacamos el siguiente resultado:

m{ẋµ, Aν} = −∂µAν − {Aµ, Aν}. (87)

Por lo tanto, podemos sustituir:

m{ẋµ, ẋν} =
1

m
∂µAν +

1

m
{Aµ, Aν}∂νAµ − 1

m
{Aν , Aµ} −

1

m
{Aµ, Aν}. (88)

m{ẋµ, ẋν} =
1

m
(∂µAν − ∂νAµ + {Aµ, Aν}) =

1

m
Fµν . (89)

https://revistajobs.ujat.mx 62

https://revistajobs.ujat.mx
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Y sabemos por las deducciones anteriores cual es la forma del tensor del campo de gauge por
(73), de dónde podemos encontrar la expresión:

∂αFµν = ∂α(∂µAν − ∂νAµ + {Aµ, Aν}). (90)

Desarrollando a (90), podemos llegar a lo siguiente:

∂αFµν + ∂µFνα + ∂νFαµ = ∂α{Aµ, Aν}+ ∂µ{Aν , Aα}+ ∂ν{Aα, Aµ} (91)

Y por lo tanto:

{Fαµ, Aν}+ {Fνα, Aµ}+ {Fµν , Aα} = ∂αFµν + ∂µFνα + ∂νFαµ. (92)

Reescribiendo:

∂αFµν − {Fµν , Aα}+ ∂µFνα − {Fνα, Aµ}+ ∂νFαµ − {Fαµ, Aν} = 0. (93)

Ahora podemos definir la derivada covariante como:

Dα = ∂α − {Fµν , Aα}. (94)

Con base en esta definición, podemos encontrar lo siguiente:

DαFµν +DµFνα +DνFαµ = 0. (95)

Esta es la expresión para las ecuaciones homogéneas del campo electromagnético.

4. Ecuaciones inhomogéneas de Maxwell.

Sin embargo, existen otras dos ecuaciones de Maxwell a tratar en nuestra demostración:

div E = 4πρ, (96)

−∂E
∂t

+ rotH = 4πJ. (97)

Las cuales son descartadas de la prueba de Dyson [1], sobre la base de que simplemente definen
las densidades de carga y corriente externas ρ y J . Sin embargo, se observa que no son simultánea-
mente invariantes de Lorentz y de Galileo[3], [7], [8]. Para poder llevar a cabo dichas expresiones
faltantes, podremos operar de diversas maneras.

4.1. El caso no abeliano.

Ahora, todo lo anterior mencionado, sugiere que las ecuaciones clásicas de campo gauge no
abeliano podŕıan obtenerse de la regla de acoplamiento mı́nimo a través de una condición especial
sobre {Aµ, Aν}. Ya que, a diferencia del caso electromagnético, los potenciales no conmutan entre śı.

Podemos empezar considerando una part́ıcula clásica moviéndose bajo la influencia de un campo
gauge no abeliano. Su dinámica está determinada por la regla de acoplamiento mı́nimo:

πµ = mẋµ +Aµ(x, I), (98)
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donde Aµ es el potencial gauge que depende de las coordenadas xµ y de las variables internas
Ia, que codifican el “color”.

Escribimos:
Aµ(x, I) = Aµ

a(x)I
a. (99)

Y asumimos que los Ia satisfacen el álgebra de Lie:

{Ia, Ib} = −fabcIc. (100)

Donde fabc son las constantes de estructura del grupo de simetŕıa.
Ahora podemos definir el tensor de campo como:

Fµν ≡ −m{ẋµ, ẋν}. (101)

Donde los corchetes de Poisson están definidos sobre el espacio de fases extendido (xµ, πµ, Ia).
A partir de (94), se tiene:

ẋµ =
1

m
(πµ −Aµ) . (102)

Por lo que podemos escribir:

{ẋµ, ẋν} =
1

m2
{πµ −Aµ, πν −Aν} =

1

m2
(−∂µAν + ∂νAµ + {Aµ, Aν}) . (103)

Y llegamos a expresar lo siguiente:

Fµν = ∂µAν − ∂νAµ + {Aµ, Aν}

Que es la expresión que ya conocemos de demostraciones anteriores.

Y ahora, usando la expansión Aµ = Aµ
a(x)Ia y la regla (96):

{Aµ, Aν} = Aµ
aA

ν
b{Ia, Ib} = −Aµ

aA
ν
bf

abcIc. (104)

Gracias a esto podemos escribir lo siguiente:

Fµν
c = ∂µAν

c − ∂νAµ
c + fabcAµ

aA
ν
b . (105)

Ahora, consideramos la identidad de Jacobi clásica para los corchetes de Poisson sobre las
trayectorias xµ(τ):

{xα, {ẋµ, ẋν}}+ {ẋµ, {ẋν , xα}}+ {ẋν , {xα, ẋµ}} = 0. (106)

Aplicando esta identidad al campo Fµν , se obtiene la versión no abeliana de la identidad de
Bianchi:

DαFµν +DµFνα +DνFαµ = 0. (107)

Donde la derivada covariante actúa sobre tensores del álgebra de Lie como:

(DµF
µν)a = ∂µF

µν
a + fabcAb

µF
µν
c . (108)

Finalmente, por consistencia del sistema, debe existir una corriente conservada jνa tal que:

(DµF
µν)a = jνa . (109)

Esta ecuación es la versión no abeliana inhomogénea de las ecuaciones de Maxwell.
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5. Conclusiones

Este trabajo ha explorado sistemáticamente el enfoque de Feynman-Dyson para derivar las
ecuaciones del electromagnetismo a partir de principios mecánicos fundamentales. Partiendo de la
formulación original galileana, hemos extendido y unificado diversas generalizaciones del método,
destacando cómo la estructura de los corchetes de Poisson conduce naturalmente a la fuerza de
Lorentz y a las ecuaciones homogéneas de Maxwell.

En primer lugar, reconstruimos la derivación clásica en el espacio eucĺıdeo, mostrando cómo
las relaciones de conmutación entre posición y velocidad –análogas a las de la mecánica cuántica–
permiten deducir la forma de la fuerza electromagnética y las leyes de divergencia magnética nula
y Faraday. Este marco revela una profunda conexión entre la dinámica de part́ıculas y la teoŕıa de
campos, aunque presenta limitaciones en su covariancia relativista.

Para superar estas restricciones, desarrollamos una formulación covariante en el espacio-tiempo
de Minkowski. Aqúı, la métrica ηµν se incorpora expĺıcitamente en la definición de los corchetes de
Poisson, preservando la invariancia Lorentz. Esta extensión no solo generaliza la fuerza de Lorentz
al caso relativista, sino que también esclarece el papel del tensor electromagnético Fµν y su relación
con potenciales que dependen del momento, introduciendo términos no mı́nimos en el acoplamiento
(Gµ).

Adicionalmente, abordamos el caso no abeliano mediante la inclusión de variables internas de
color Ia que satisfacen álgebras de Lie. Este enfoque permite derivar ecuaciones tipo Yang-Mills,
donde la no conmutatividad de los potenciales conduce naturalmente a la versión inhomogénea de
las ecuaciones de Maxwell en presencia de cargas no abelianas. La derivada covariante Dµ emerge
aśı como una herramienta geométrica esencial para garantizar la consistencia dinámica.

Direcciones futuras:

• Extender el formalismo a variedades pseudo-Riemannianas para incorporar gravitación

• Explorar generalizaciones en geometŕıas no conmutativas (κ-Minkowski)

• Investigar implicaciones en teoŕıas de campo efectivas donde emergen acoplamientos no
mı́nimos
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Apéndice

A. Conmutadores

Este apéndice recoge las herramientas algebraicas esenciales utilizadas en la derivación de las
ecuaciones de Maxwell. Los conmutadores, definidos como operaciones bilineales antisimétricas,
juegan un papel central en la conexión entre la dinámica de part́ıculas y la teoŕıa de campos
electromagnéticos.

A.1. Identidades básicas

Las siguientes identidades son fundamentales para el desarrollo de las demostraciones:

Identidad de Jacobi: Estructura algebraica que garantiza consistencia en álgebras de Lie:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (110)

Regla de Leibniz I: Comportamiento del conmutador frente a productos:

[A,BC] = [A,B]C +B[A,C] (111)

Regla de Leibniz II: Derivación temporal de conmutadores:

d

dt
[A,B] =

[
dA

dt
,B

]
+

[
A,

dB

dt

]
(112)
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Arias-Jiménez et al. Journal of Basic Sciences vol.11(32), p.52-67, septiembre-diciembre 2025

A.2. Definición y propiedades algebraicas

El conmutador de dos operadores Â y B̂ actúa sobre funciones prueba ψ como:

[Â, B̂]ψ = Â(B̂ψ)− B̂(Âψ) (113)

De esta definición se derivan propiedades clave:

[A,A] = 0 (Nilpotencia) (114)

[A,B] = −[B,A] (Antisimetŕıa) (115)

[A,F (A)] = 0 (Conmutatividad funcional) (116)

[A,B + C] = [A,B] + [A,C] (Linealidad) (117)

[A,BC] = B[A,C] + [A,B]C (Regla de derivación) (118)

A.3. Relaciones de conmutación canónicas

Para operadores de posición (x̂i) y momento (p̂j = −iℏ∂j), las relaciones fundamentales son:

Conmutatividad espacial:
[xi, xj ] = 0 (119)

Conmutatividad del momento:
[pi, pj ] = 0 (120)

Relación canónica:
[xi, pj ] = iℏδij (121)

La derivación de (121) se obtiene directamente de la acción sobre funciones prueba:

[xi, pj ]ψ = iℏδijψ (122)

A.4. Expresión generalizada para funciones

Para funciones F (x, ẋ) y G(x, ẋ), el conmutador adopta la forma:

[F,G] =
∑
k,l

(
[xk, xl]

∂G

∂xk

∂F

∂xl
+ [xk, ẋl]

∂G

∂xk

∂F

∂ẋl
+ [ẋk, xl]

∂G

∂ẋk

∂F

∂xl
+ [ẋk, ẋl]

∂G

∂ẋk

∂F

∂ẋl

)
(123)

Esta expresión general es particularmente útil al trabajar con espacios de fases extendidos en
las formulaciones relativistas y no abelianas desarrolladas en el art́ıculo.
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Resumen

En este trabajo se exploran los conceptos de representabilidad y de objeto universal, aśı co-
mo el Lema de Yoneda, todo esto perteneciente a la teoŕıa de categoŕıas. Se presentan diversos
ejemplos para ilustrar los conceptos. Para esto, son considerados objetos de distintas áreas de las
matemáticas, como Álgebra Lineal, Topoloǵıa, Teoŕıa de Anillos, entre otras. Además, se propor-
cionan demostraciones para los resultados.

Palabras claves: Funtores representables, lema de Yoneda, Teoŕıa de categoŕıas, transformaciones
naturales.

Abstract
In this work we explore the concepts of representability and universal object, as well as Yoneda’s
Lemma, which belong to Category Theory. We provide several examples to illustrate the concepts.
In order to do this, we consider objects coming from different mathematical fields, such as Linear
Algebra, Topology, Ring Theory, among others. Besides, we provide proofs for the results.

Keywords: Representable functors, Yoneda’s lemma, Category Theory, Natural Transformations

Recibido: 10 de abril de 2025. Aceptado: 18 de noviembre de 2025. Publicado: 12 de diciembre de 2025.

1. Introducción

La teoŕıa de cateogoŕıas es un lenguaje bastante abstracto pero que, al contextualizarlo de ma-
nera adecuada, resulta ser muy expresivo, de tal forma que permite describir hechos, situaciones o
comportamientos que tienen algunos objetos matemáticos. Es pertinente mencionar que estudiar
por primera vez esta teoŕıa puede ser complicado, y esto es debido a su alto nivel de abstracción;
como se verá más adelante, se hablará de “objetos” y “morfismos”, sin decir qué son, mencionando
sólamente cómo deben comportarse.

En esta teoŕıa, la atención se centra en las relaciones que hay entre los objetos de una categoŕıa
(morfismos); las relaciones entre categoŕıas (funtores) y las que hay entre funtores (transformacio-
nes naturales). De hecho, el concepto de categoŕıa es auxiliar; los conceptos básicos son los de funtor
y de transformación natural. Esto fue dicho por los mismos autores (Samuel Eilenberg y Saunders
Mac Lane) en su art́ıculo seminal “General Theory of Natural Equivalences” [1], publicado en 1945.

La generalidad de la teoŕıa de categoŕıas permite ver similitudes que se encuentran entre dos
áreas de las matemáticas que no parecieran tener algo en común. En realidad, es aśı que nace
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la teoŕıa: aunque el primer escrito fue publicado en 1945, sus oŕıgenes pueden rastrearse un poco
más atras, en un encuentro entre MacLane y Eilenberg en 1942. Por una parte, Eilenberg estaba
interesado en calcular grupos de homoloǵıa, cohomoloǵıa y homotoṕıa. Por otra parte, Mac Lane
estaba interesado en extensiones de grupos. Fue en una serie de pláticas dadas por Mac Lane y
atendidas por Eilenberg, que este último notó ciertas coincidencias entre los trabajos de ambos.
Investigar estas coincidencias fue lo que llevó a la noción de funtor y de transformación natural [6].

Rápidamente se aprecia el poder de las categoŕıas; en 1957, Grothendieck publica el revolucio-
nario art́ıculo “Sur quelques points d’algèbre homologique”, en donde la utiliza de manera extensa,
no sólo como un lenguaje en el cual expresarse y organizar de manera sistemática campos de las
matemáticas (como la topoloǵıa algebraica), sino también como una herramienta para probar re-
sultados matemáticos [6].

Naturalmente, el interés por la teoŕıa de categoŕıas persiste. El objetivo de este art́ıculo es
hablar acerca de los funtores representables, del Lema de Yoneda y objetos universales; daremos
sus definiciones, se presentan ejemplos, se enuncian y demuestran algunos resultados relacionados
a ellos. Aunque para poder llegar a dichos conceptos, habremos de pasar por le definición de cate-
goŕıa, funtor y transformaciones naturales.

Las definiciones y resultados (aunque aqúı se ofrecen pruebas de éstos) relacionados con la
teoŕıa de categoŕıas que se presentan pueden encontrarse tanto en [5] como en [10]; sin embargo,
este último tiene un tratamiento un poco más moderno y es el que se prefiere. No obstante, la
esencia sigue siendo la misma.

Finalmente, este texto está dirigido a personas que tengan conocimientos básicos de topoloǵıa
(de conjuntos) como en [7], álgebra lineal y álgebra abstracta [4]. No se espera conocimiento alguno
de teoŕıa de categoŕıas.

Finalmente, para los lectores con más bagaje matemático: se ha mencionado que la teoŕıa de
categoŕıas encuentra conexiones entre diferentes áreas de las matemáticas. A continuación son
mencionados ejemplos más elaborados de su uso:

Los conjuntos junto con las funciones forman la categoŕıa Set; los esquemas junto con sus
morfismos forman la categoŕıa de esquemas, que se denota por Sch [3] . Los funtores F :
Sch → Set aparecen en la teoŕıa de espacios y problemas moduli (problemas de clasificación)
[8].

El primer grupo de homotoṕıa (o grupo fundamental) induce un funtor entre la categoŕıa de
espacios topológicos puntuados (es decir, un pares (X,x), donde X es un espacio topológico
y x es un elemento fijo de X) y la categoŕıa de grupos, Gr [12].

Se tiene una relación entre la topoloǵıa diferencial y el álgebra lineal dada por un funtor
que va de la categoŕıa de las variedades suaves, Diff a los espacios vectoriales reales VecR, el
cual manda una variedad suave M al espacio (vectorial) de las funciones suaves f : M → R,
denotado por C∞. Por otra parte, un mapeo suave entre variedades F : M → N se convierte
en una transformación lineal F ∗ bajo la acción de tal funtor [9, 12].

De manera particular, la referencia [12] utiliza de forma extensiva el lenguaje de las categoŕıas
(y otras teoŕıas) en el estudio de las variedades topológicas.
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2. Categoŕıas, funtores y transformaciones naturales.

Convención: En los ejemplos relacionados con anillos, se da por hecho que todos tienen uni-
tario, al cual denotaremos por 1, y que los homomorfismos de anillos preservan el unitario. Para
mayor información sobre la teoŕıa de anillos (y en general, del álgebra que se utilizará en el texto)
una referencia es [4].

2.1. Categoŕıas

Las categoŕıas están compuestas de objetos y de morfismos entre ellos. A continuación se men-
cionan las cosas que debe cumplir una categoŕıa. En primer lugar, los morfismos entre las cosas se
pueden componer: siempre que existe un diagrama

A B

C,

f

g

éste se puede completar con

A B

C.

f

g◦f
g (1)

Además, la composición es asociativa:

f ◦ (g ◦ h) = f ◦ g ◦ h = (f ◦ g) ◦ h.

Por último, siempre existe un morfismo 1A : A → A de tal forma que se tienen los siguientes
diagramas conmutativos:

A A

B,

1A

g=g◦1A
g o

A B

B.

f

f=1B◦f
1B

De manera más formal, la definición de categoŕıa es la siguiente:

Definición 2.1. Una categoŕıa A consta de

i) una clase ob(A) de objetos en A;

ii) para cada par de objetos A,B existe un conjunto MorA(A,B) (también denotado por Mor(A,B),
si no hay riesgo de confusión) de morfismos (o flechas o funciones) que van de A a B;

iii) para objetos A,B,C en la categoŕıa existe una función

MorA(B,C)×MorA(A,B) → MorA(A,C)
(g, f) 7→ g ◦ f,

que es llamada composición;
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iv) para cada objeto A existe un elemento 1A en MorA(A,A), que es llamado la identidad en
A,

que satisfacen los siguientes axiomas:

a) asociatividad de la composición: para cada f ∈ MorA(A,B), g ∈ MorA(B,C) y h ∈
MorA(C,D) tenemos

(h ◦ g) ◦ f = h ◦ (g ◦ f);

b) ley de identidad: para cada f ∈ MorA(A,B) tenemos

f ◦ 1A = f = 1B ◦ f.

c) Los conjuntos Mor(A,B) son disjuntos por pares.

Algunos ejemplos

Los siguientes son ejemplos de categoŕıas, los cuales pueden consultarse en [10] y [4], principal-
mente. No obstante, la categoŕıa TopX aparece en [2] y en [3].

Ejemplo 2.1. 1) Categoŕıa Set: La colección de conjuntos y las funciones entre ellos son una
categoŕıa. En efecto: en esta categoŕıa los objetos son los conjuntos y los morfismos son las
funciones. La composición de morfismos es la composición usual de funciones, la cual satisface
la ley de asociatividad. Por último, para todo conjunto X existe una función f que va de X
en X definida por f(x) = x (que es llamada función identidad). Esta función cumple con la
ley de la identidad de la definición de categoŕıa.

2) Categoŕıa V ecK: El conjunto de espacios vectoriales sobre un campo K con las transforma-
ciones lineales forman una categoŕıa, la composición de morfismos es la composición usual
de transformaciones lineales y el morfismo identidad es la transformación lineal identidad.

3) Categoŕıa Ring: La colección de anillos con los homomorfismos, la composición de homo-
morfismos (que es la composición usual de funciones) y el homomorfismo identidad conforman
esta categoŕıa.

4) Categoŕıa Top: Esta categoŕıa está conformada por la colección de espacios topológicos junto
con las funciones continuas, la composición de funciones y la función identidad.

5) Categoŕıa TopX: Sea X un espacio topológico. Los componentes de esta categoŕıa son:

i) Los abiertos de la topoloǵıa serán los objetos de la categoŕıa.

ii) Si U0, U1 son abiertos en X tales que U0 ⊂ U1, entonces se define la función inclusión
i : U0 → U1 con regla de correspondencia i(x) = x, para todo x ∈ U0; las funciones
inclusión serán los morfismos de la categoŕıa.

iii) La composición de los morfismos es la composición usual de funciones.

iv) El morfismo identidad es la función identidad I : U0 → U0.

De hecho, hay muchas más estructuras, como anillos, grupos, espacios vectoriales, o espacios
topológicos, las cuales se relacionan o determinan mediante un tipo distinguido de función: los
isomorfismos. Esto da lugar a la siguiente definición:
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Definición 2.2. Un morfismo f : A → B en la categoŕıa A es un isomorfismo si existe un
morfismo g : B → A tal que g ◦ f = 1A y f ◦ g = 1B.

Aśı, por ejemplo, los morfismos en la categoŕıa de anillos son los isomorfismos de anillos; los
isomorfismos en la categoŕıa TopX son las funciones identidad, y en la categoŕıa Set son las fun-
ciones biyectivas.

2.2. Funtores

Aśı como los objetos están conectados por morfismos, aśı también las categoŕıas están conecta-
das por funtores. Un funtor lo se denota con una flecha indicando la categoŕıa de donde parte a la
categoŕıa donde llega. Por ejemplo, un funtor de la categoŕıa A a la categoŕıa B lo escribimos por
A → B, y si queremos ser más espećıficos y mencionar el nombre del funtor, hacemos F : A → B.
Un funtor lo que hace es tomar objetos y morfismos en A y mandarlos como objetos y morfismos
en B. Hay dos tipos de funtores, los covariantes y los contravariantes. En un momento decimos cuál
es la diferencia.

Utilicemos nuevamente los diagramas: si f : A → B y g : B → C son morfismos en A (natural-
mente, A , B y C son objetos en A), entonces(

A
f−→ B

)
F−→

(
F(A)

F(f)−→ F(B)

)
si el funtor es covariante, y si el funtor es contravariante:(

A
f−→ B

)
F−→

(
F(B)

F(f)−→ F(A)

)
.

A continuación, se presentan dos ejemplos de funtores, primero uno covariante y luego otro
contravariante.

Ejemplo 2.2. Se definine el funtor olvidadizo F : V ecK → Set, el cual

manda un espacio vectorial (V,+, ∗) a su conjunto subyacente F((V,+, ∗)) = V ;

y una transformación lineal f : V → W la convierte en la función de conjuntos F(f) :
F(V ) → F(W ), que tiene la misma regla de correspondencia de f .

Puesto en palabras llanas, este funtor “olvida” la estructura de los objetos en la categoŕıa V ecK .
De manera similar puede definirse un funtor olvidadizo para las categoŕıas de grupos, anillos, etc.

Ejemplo 2.3. Dada una categoŕıa A, como los morfismos que van del objeto X al objeto B (pa-
ra cualesquiera X y B en A) forman un conjunto, entonces siempre podemos definir el funtor
Mor(−, X) : A → Set de la siguiente forma:

a un objeto A en A se le asigna el objeto Mor(A,X) en Set, que es el conjunto de todos los
morfismos que van de A en X;

y dado un morfismo f : A → B en A, se tiene un morfismo en Set (es decir, una función de
conjuntos) Mor(f,X) : Mor(B,X) → Mor(A,X) definida por

Mor(f,X)(g) = g ◦ f,

para todo morfismo g ∈ Mor(B,X).
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Puede explicarse con un diagrama:

Mor(B,X) −→ Mor(A,X)

B

X

g ⇝
A B

X.

Mor(f,X)(g)

f

g

Para ser más concretos, se considera la categoŕıa de espacios vectoriales sobre R, V ecR. Se
definirá el funtor

Mor(−,R) : V ecR → Set.

Aśı, si se toma un objeto en V ecR, por decir, R3, entonces se tiene el conjunto

Mor(R3,R) = {α : R3 → R| α es lineal}.

Por otra parte, la función lineal α : R2 → R3 definida por α(x, y) = (x, y, z0) (donde z0 es una
constante), define una función de conjuntos

Mor(α,R) : Mor(R3,R) → Mor(R2,R)
β 7→ β ◦ α.

Si se considera β : R3 → R definida por β(x, y, z) = (x, y+ z, y− z), entonces Mor(α,R)(β) = β ◦α
es una función lineal que va de R2 en R y que está definida por

(β ◦ α)(x, y) = β(x, y, z0) = (x, y + z0, y − z0).

2.3. Transformaciones Naturales

A continuación se definen las transformaciones naturales, que son las relaciones que hay entre
funtores. Se comienza con dos funtores contravariantes F ,G : A → B. Consideremos un morfismo
f : A → B en A. Cuando se aplican los funtores obtenemos dos morfismos F(f) : F(B) → F(A)
y G(f) : G(B) → G(A) (y por lo tanto, cuatro objetos) en la categoŕıa B. Es posible que hayan
morfismos τA : F(A) → G(A) y τB : F(B) → G(B) en la categoŕıa B, con lo cual se tendŕıan los
diagramas

F(B) G(B)

G(A)

τB

G(f)

F(B)

F(A) G(A).

F(f)

τA

Como se vio antes, siempre que se tienen diagramas de ese estilo, es posible componerlos (como en
el diagrama (1)), teniendo aśı

F(B) G(B)

G(A)

τB

G(f)◦τB
G(f) y

F(B)

F(A) G(A).

F(f)
τA◦F(f)

τA

Se centra la atención solamente en el conjunto de morfismos τ− tales que

τA ◦ F(f) = G(f) ◦ τB.

Aśı, la definición de transformación natural es:
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Definición 2.3. Considérense dos funtores F ,G : A → B. Una transformación natural τ : F → G
se define como un conjunto de morfismos τA : F(A) → G(A) en B que hacen conmutar el diagrama
siguiente:

F(B) G(B)

F(A) G(A).

F(f)

τB

G(f)

τA

Si τB es un isomorfismo para todo objeto B en B, entonces τ se dice que es un isomorfismo
natural y que F y G son naturalmente isomorfos.

Esta es la forma correcta de definir las relaciones entre funtores. En la siguiente sección se pre-
senta un ejemplo de una transformación natural.

3. Funtores Representables

Los funtores representables son los que se parecen o se comportan como un funtor del tipo
Mor(−, A) (o bien, Mor(A,−)). Las transformaciones naturales serán utilizadas para dar un senti-
do exacto a esto y se probará que el funtor olvidadizo F : V ecR → Set es representable.

Definición 3.1. Un funtor F : A −→ Set contravariante se dice representable (por un objeto
X en A) siempre que F sea naturalmente isomorfo al funtor Mor(−, X) : A −→ Set.

Observación inmediata: como F y Mor(−, X) son naturalmente isomorfos, entonces para cada
objeto A en A existe una biyección entre los morfismos que van de A en X, Mor(A,X), y el con-
junto F(A).

Ejemplo 3.1. En este ejemplo se demuestra que el funtor olvidadizo es representable: para ello se
construye una transformación natural entre F y Mor(R,−) y se demuestra que, de hecho, es un
isomorfismo natural. Obsérvese que toda función lineal T : R → V cumple T (r) = rT (1), basta con
decir quién es T (1) para que la función lineal quede determinada. Aśı, la transformación natural α
que se propone está definida por

αV : F(V ) −→ Mor(R, V )
v 7−→ Tv,

en donde Tv es una transformación lineal que cumple que T (1) = v.
Luego, sea

βV : Mor(R, V ) −→ F(V )
T 7−→ T (1).

Como (βV ◦ αV )(v) = v y (αV ◦ βV )(T ) = T , tenemos que αV es una función biyectiva para
cualquier V , luego, la transformación natural α es un isomorfismo natural y por consiguiente F es
un funtor que está representado por R.

Se resalta la biyección F(V ) ≃ Mor(R, V ) para cada objeto V : hay tantas transformaciones
lineales R → V como elementos en F(V ), o bien, tantas como vectores en V .
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Un hecho por el cual interesan tanto los morfismos como el funtor Mor(−, X) es que éstos
determinan a un objeto. De forma precisa: si Mor(−, X) ≃ Mor(−, Y ), entonces X ≃ Y . Más
adelante será dada una demostración de esto. Primero, se hablará sobre un resultado central en la
teoŕıa de categoŕıas: el Lema de Yoneda.

4. Lema de Yoneda

El Lema de Yoneda involucra transformaciones naturales entre funtores con categoŕıa de llega-
da Set, F : A → Set y Mor(−, X), con X en A y se relaciona con la siguiente pregunta ¿cuántas
transformaciones naturales existen entre F y Mor(−, X)?

Se enuncia y demuestra la siguiente proposición, que es conocida como la forma débil del Lema
de Yoneda:

Proposición 4.1. Para cualquier funtor contravariante F : A −→ Set, cualquier objeto A ∈ ob(A)
y cualquier elemento a ∈ F(A), existe una única transformación natural τ : Mor(−, A) −→ F con
τA(1A) = a.

Demostración. Para cualquier objeto B en A definimos una función

τB : Mor(B,A) → F(B)
f 7→ F(f)(a).

Nótese que f : B → A y F(f) : F(A) → F(B) (pues F es contravariante), por lo que F(f)(a) ∈
F(B) y entonces la función τB está bien definida. Se quiere construir una transformación natural
τ cuyos morfismos componentes son las funciones τB. Para ello, debe considerarse el morfismo
h : C → B en A y se verifica que el siguiente diagrama conmuta:

Mor(B,A) F(B)

Mor(C,A) F(C).

τB

Mor(h,A) F(h)

τC

(2)

Téngase presente que F(h) ◦ τB y τC ◦Mor(h,A) son funciones entre conjuntos y para mostrar que
son iguales, debemos ver que tienen el mismo dominio y contradominio (lo cual es evidente) y regla
de correspondencia. Se comprueba esto último. Por una parte

(F(h) ◦ τB)(f) = F(h)(F(f)(a))

= (F(h) ◦ F(f))(a)

= F(f ◦ h)(a),

por otro lado,

(τC ◦Mor(h,A))(f) = τC(Mor(h,A)(f))

= τC(f ◦ h)
= F(f ◦ h)(a).

Aśı, F(h) ◦ τB = τC ◦Mor(h,A) y por consiguiente el diagrama (2) conmuta. En consecuencia, τ
es una transformación natural.
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Obsérvese, también, que τA(1A) = F(1A)(a) = 1A(a) = a. Ya se encontró la transforma-
ción natural que cumple la condición del enunciado, falta probar que es única. Supóngase que
δ : Mor(−, A) → F es otra transformación natural que satisface δA(1A) = a. Se probará que
δB = τB para cualquier objeto B en A, concluyendo aśı que δ = τ y que por lo tanto τ es única.
Considérese un morfismo g : B → A y el diagrama conmutativo

Mor(A,A) F(A)

Mor(B,A) F(B).

δA

Mor(g,A) F(g)

τB

(3)

De la conmutatividad del diagrama se tiene que

F(g)(a) = F(g)(δA(1A)) = (F(g) ◦ δA)(1A)
= (δB ◦Mor(g,A))(1A)

= δB(1A ◦ g)
= δB(g).

Pero como τB(g) = F(g)(a), entonces τB(g) = δB(g), y eso se puede probar para cualesquiera
g ∈ Mor(B,A) y objeto B en A, por lo que se concluye que δ = τ . Con esto se termina la
demostración.

De la proposición anterior se desprende el siguiente corolario, que es conocido como el Lema
de Yoneda. Se introduce notación: dado un objeto A en una categoŕıa A y F : A → Set un funtor
contravariante, se denotará por [Mor(−, A),F ] al conjunto de todas las transformaciones naturales
de Mor(−, A) en F .

Corolario 4.1 (Lema de Yoneda). Si F : A → Set es un funtor y A es un objeto de A, entonces
la función

Y : [Mor(−, A),F ] −→ F(A)
σ 7−→ σA(1A),

(4)

es una función biyectiva.

Con estos resultados es posible probar el siguiente resultado.

Corolario 4.2. Considérese un funtor contravariante F : A → Set. Si Mor(−, X) ≃ F ≃
Mor(−, Y ), entonces X ≃ Y .

Demostración. La demostración consistirá en encontrar morfismos f : X → Y y g : Y → X tales
que f ◦ g = 1Y y g ◦ f = 1X , es decir, probar que existe un isomorfismo entre X y Y . En principio
de cuentas no se sabe cuál es el isomorfismo natural que hay entre Mor(−, X) y Mor(−, Y ), pero
es sabido que para todo objeto A en A existe una biyección Mor(A,X) ≃ Mor(A, Y ). Denótese al
isomorfismo natural por τ : Mor(−, X) → Mor(−, Y ) y por τ−1 : Mor(−, Y ) → Mor(−, X) a su
inversa. En particular se tienen las biyecciones

τ−1
Y : Mor(Y, Y ) → Mor(Y,X) (5)

y
τX : Mor(X,X) → Mor(X,Y ). (6)
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De (5) se sabe que existe un único morfismo g ∈ Mor(X,Y ) tal que τX(1X) = g y de (6) tenemos
un único f ∈ Mor(Y,X) tal que τ−1

Y (1Y ) = f .

Por otra parte (se sigue considerando g ∈ Mor(X,Y ) y f ∈ Mor(Y,X)), nótese que la transfor-
mación natural Mor(−, g) : Mor(−, X) → Mor(−, Y ) definida por

Mor(Z, g)(h) = g ◦ h,

para todo objeto Z en A y h ∈ Mor(Z,X), satisface

Mor(X, g)(1X) = g ◦ 1X = g = τX(1X).

Mientras que la transformación natural Mor(−, f) : Mor(−, Y ) → Mor(−, X) definida por

Mor(Z, f)(h) = f ◦ h

cumple que
Mor(X, f)(1Y ) = f ◦ 1Y = f = τ−1

Y (1Y ).

Luego, por la proposición 4.1, τ = Mor(−, g) y τ−1 = Mor(−, f), por lo tanto,

1X = τ−1
X (τX(1X)) = τ−1

X (g)

= Mor(X, f)(g)

= f ◦ g.

Análogamente

1Y = τY (τ
−1
Y (1Y )) = τY (f)

= Mor(Y, g)(f)

= g ◦ f.

Por lo tanto, X ≃ Y .

Si F : A → Set es un funtor que está representado por X a través de la transformación natural
τ , entonces, por definición de representabilidad y por el lema de Yoneda se tienen las siguientes
biyecciones:

[Mor(−, X),F ] ≃ F(X) ≃ Mor(X,X).

Ejemplo 4.1. Se comienza este ejemplo [11] 1 haciendo una diferencia entre forma polinomial y
función polinomial: dado un anillo R, una forma polinomial (o simplemente polinomio) P , con
coeficientes en el anillo R y con la indeterminada X, es una expresión formal

P (X) = adX
d + ...+ a1X + a0,

mientras que una función polinomial P de R en R se define como

PR : R −→ R
r 7−→ adr

d + ...+ a1r + a0.

En la notación de función polinomial se especifica en qué anillo se trabaja, pues debe dejarse
en claro que hacer una distinción entre función y forma polinomial no es un exceso de formalidad,
por ejemplo:

1El ejemplo está inspirado en una entrada de una página de internet hecha por T. Tao [11]

https://revistajobs.ujat.mx 77

https://revistajobs.ujat.mx


Javier-Dı́az et al. Journal of Basic Sciences vol. 11 (32), p. 68–84, septiembre–diciembre 2025

P = X y Q = −X son diferentes como formas polinomiales, sin embargo coinciden cuando
se interpretan en el anillo Z/2Z, puesto que n = −n, para todo elemento n de dicho anillo.

el polinomio X2 +1 no tiene ráıces cuando se interpreta como polinomio en R, mientras que
śı las tiene cuando se interpreta como polinomio en los números complejos.

De lo anterior podemos observar que si se considera una forma polinomial en un solo anillo es
posible que se pierda información. Más adelante se verá que las transformaciones naturales permi-
ten considerar las formas polinomiales en todos los anillos al mismo tiempo.

El conjunto de polinomios con coeficientes en un anillo R y con indeterminada X, junto con su
producto y suma usual forman un anillo, que se denota por R[X]. Un anillo de polinomios que será
conspicuo en todo este ejemplo es el de polinomios con coeficientes en los enteros, Z[X]. Nótese
que cualquier polinomio P (X) = adX

d + ...+ a1X + a0 en Z[X] induce una función polinomial en
cualquier anillo R consigo mismo: una función polinomial de la forma PR, definida como antes.

Además, si φ : R → S es un homomorfismo de anillos, la siguiente igualdad se cumple:

PS ◦ φ = φ ◦ PR. (7)

No es dif́ıcil convencerse de que esto es cierto. Solamente debe tenerse en cuenta que, si n es
un entero y r ∈ R, entonces φ(nr) = nφ(r), y en particular, si r = 1R (el elemento unitario de R),
entonces φ(n1R) = nφ(1R) = n1S . Abusando un poco de la notación, se escribirá n1S = n. Luego,
si r ∈ R se sigue que

(PS ◦ φ) (r) = PS(φ(r))

= adφ(r)
d + ...+ a1φ(r) + a0

= φ(adr
d + ...+ a1r + a0)

= φ(PR(r))

= (φ ◦ PR) (r)

La siguiente parte del ejemplo consiste en utilizar el lenguaje de las categoŕıas.
Considérese el funtor olvidadizo

F : Rings → Sets,

en donde, si φ : R → S es un homomorfismo de anillos, entonces

F(R) y F(S) son los conjuntos subyacentes del anillo R y de S, respectivamente.

F(φ) : F(R) → F(S) es una función de conjuntos con misma regla de correspondencia que
φ.

En este punto se aplica el Lema de Yoneda, el cual asevera que hay tantas transformaciones
naturales entre Mor(R,−) y F como elementos en F(R), para todo anillo R. En śımbolos:

[Mor(R,−),F ] ≃ F(R) (8)

Ahora se construye una transformación natural F → F . Se retoma lo dicho al inicio del ejemplo:
La forma polinomial P = adX

d + ... + a1X + a0 en Z[X] será la transformación natural, y las
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funciones polinomiales PR serán los morfismos componentes, para cada anillo R. En efecto, el
diagrama

F(R)
PR //

F(φ)
��

F(R)

F(φ)
��

F(S)
PS

// F(S),

conmuta gracias a la ecuación (7).

Es momento de hablar de los morfismos de evaluación. Dado cualquier anillo R, siempre puede
definirse un homomorfismo de anillos

ΦR,r : Z[X] −→ R
P 7−→ P (r).

Nótese que basta con especificar cuál es el elemento de R que se corresponde con el polinomio
X para definir por completo al homomorfismo de evaluación.

Ahora se define Φ : Mor(Z[X],−) → F . Para cada anillo R, se tiene la función

ΦR : Mor(Z[X], R) −→ F(R)
f 7−→ f(X).

Sea φ : R → S un homomorfismo de anillos. Se demostrará que el diagrama

Mor(Z[X], R)
ΦR //

Mor(Z[X],φ)

��

F(R)

F(φ)
��

Mor(Z[X], S)
ΦS

// F(S)

conmuta. Sea f ∈ Mor(Z[X], R). Luego,

(F(φ) ◦ ΦR)(f) = F(φ)(f(X)) = ϕ(f(X)).

Por otro lado,

(ΦS ◦Mor(Z[X], φ)) (f) = ΦS (φ ◦ f) = (φ ◦ f)(X) = φ(f(X)),

por lo que
F(φ) ◦ ΦR = ΦS ◦Mor(Z[X], φ),

y entonces Φ es una transformación natural.

Una sencilla observación es que todo homomorfismo de anillos f : Z[X] → R es un homo-
morfismo de evaluación: f = ΦR,f(X). Recuérdese, además, que basta decir cuál es la imagen de
X para que el morfismo de evaluación quede completamente definido. Por otra parte, para ca-
da r ∈ R existe un morfismo de evaluación: ΦR,r. Con lo cual, lo que se está probando es que
ΦR : Mor(Z[X], R) → F(R) es una biyección, para todo anillo R. Por lo tanto, Φ es un isomorfis-
mo natural y entonces F está representado por Z[X].
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Aśı,
F ≃ Mor(Z[S],−)

y la ecuación (8) se convierte en

F(Z[X]) ≃ [Mor(Z[X],−),F ],

y entonces las formas polinomiales P están en biyección con las familias de funciones polino-
miales FR que satisfacen la ecuación 7.

5. Objetos Universales

El Lema de Yoneda y la representabilidad de un funtor F llevan a un objeto de interés. Por
el lema débil de Yoneda se tiene que para cualquier objeto X en C y x ∈ F(X) existe un única
transformación natural τ : Mor(−, X) → F que cumple

τX : Mor(X,X) → F(X)
1X 7→ x

Ahora supóngase que F está representado por A. Si eso ocurre, entonces

F(A) → Mor(A,A)

es una biyección, por lo tanto existe un único a ∈ F(A) tal que a 7→ 1A. Considérese un objeto X en
C y x ∈ F(X). Nuevamente, por la representabilidad de F es sabido que existe un (único) morfismo
f tal que x → f ∈ Mor(X,A). Esto último se puede comprobar gracias al diagrama conmutativo

F(A) ∋ a x ∈ F(X)

Mor(A,A) ∋ 1A f ∈ Mor(X,A)

F(f)

Mor(f′A)

Obsérvese que F(f)(a) = x; aún más, el morfismo f es el único morfismo que lo cumple.

Definición 5.1. Sea F : C → Set un funtor contravariante. Un objeto universal para F es un
par (X,x), donde X es un objeto en C y x ∈ F(X), el cual tiene la propiedad de que para cada
objeto A de C y cada a ∈ F(A), existe un único morfismo f : A → X tal que (F(f))(x) = a ∈ F(A).

Para llegar al objeto universal fue necesario suponer que el funtor estaba representado. Sin
embargo, la relación entre objeto universal y representabilidad es más estrecha, puesto que no
existe el uno sin el otro, como se establece en la siguiente proposición.

Proposición 5.1. Un funtor F : Cop → Set es representable si y solo si tiene un objeto universal.

Demostración. Ya se ha probado que representable implica la existencia de familia universal, ahora
se demuestra que la familia universal implica representabilidad. Supóngase que (A, a) es un objeto
universal para F . Se define una transformación natural Φ : F → Mor(−, A), en donde, para cada
objeto X en C se tiene

Φ(X) : F(X) → Mor(X,A)
x 7→ fx,

en donde fx es tal que F(fx)(a) = x.
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Se toman X,Y objetos y h : Y → X en C y se demuestra que el diagrama

F(X) Mor(X,A)

F(Y ) Mor(Y,A)

ΦX

F(h) Mor(h,A)

ΦY

es conmutativo. Sea x ∈ F(X). Entonces

(Φ(Y ) ◦ F(h))(x) = fF(h)(x),

en donde F(fF(h)(x))(a) = F(h)(x). Por otra parte,

(Mor(h,A) ◦ Φ(X))(x) = fx ◦ h.

Se observa que

F(fx ◦ h)(a) = F(h)(F(fx)(a))

= F(h)(x),

y por la unicidad de fF(h)(x), se sigue que fx ◦ h = fF(h)(x). En consecuencia el diagrama es con-
mutativo y Φ es una transformación natural.

Finalmente se prueba que ΦX : F(X) → Mor(X,A) es una biyección. Considerar x, y ∈ F(X).
Si ΦX(x) = ΦX(y), entonces x = fx(a) = fy(a) = y, por lo tanto ΦX es inyectiva.
Por otro lado, si g ∈ Mor(X,A), entonces F(g) ∈ Mor(F(A),F(X)) y como a ∈ F(A), se sigue que
F(g)(a) ∈ F(X). Luego, ΦX(F(g(a))) = gF(g)(a) y g cumple con F(gF(g)(a))(a) = F(g)(a), lo cual
prueba que ΦX es biyectiva.

Aśı, se concluye que Φ es un isomorfismo natural y por consiguiente F ≃ Mor(−, A).

¿Cuál es el interés en el objeto universal? Ocurre que el objeto universal funciona como una
especie de espacio de parámetros: cualquier elemento a ∈ F(A), para cualquier A, puede rastrearse
a través de X y x. En el siguiente ejemplo, se muestra la relevancia de dicho objeto.

Ejemplo 5.1. Este ejemplo puede encontrarse en [2], aqúı lo es desarrollado un poco más. Además,
se hace uso de algunos hechos topológicos elementales, los cuales pueden consultarse en cualquier
libro de topoloǵıa general, por ejemplo, en [7].

Considerar la categoŕıa Top. Se define un funtor contravariante F : Top → Set que manda cada
espacio topológico S a la colección F(S) de todos sus subespacios abiertos, y dado un morfismo (i.e.
una función continua) f : X → Y , se tiene la función de conjuntos

F(f) : F(Y ) → F(X)
U 7→ f−1(U).

Se equipa con la topoloǵıa mas gruesa al conjunto {0, 1} en la cual el subconjunto {0} ⊂ {0, 1} sea
cerrado (este espacio topológico es llamado espacio de Sierpinski); los subconjuntos abiertos en esta
topoloǵıa son ∅, {1} y {0, 1}. Obsérvese que si f : S → {0, 1} es continua, entonces f−1({1}) es
abierto. Rećıprocamente, si se supone que f−1({1}) es abierto en S, entonces f−1({0, 1}), f−1({1})
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y f−1({∅}) son abiertos en S, por lo tanto f es continua. Luego, tenemos la equivalencia: una
función S → {0, 1} es continua si y solo si f−1({1}) es abierto en S.

Se demuestra que el par ({0, 1}, {1}) es un objeto universal para este funtor. Considérese un
objeto A en Top y U ∈ F (A) un abierto de A. Se desea probar que existe una única función continua
f : A → {0, 1} con la propiedad de que

F(f) : F ({0, 1}) → F(A)
{1} 7→ U.

(9)

Se define
f : X → {0, 1}

x 7→ 1 si x ∈ U
x 7→ 0 si x /∈ U,

y se observa que esta función cumple 9. ¿Es la única? Si se supone que existe otra función f̄ que
satisface 9. Entonces F(f̄)({1}) = f̄−1({1}) = U , que implica f̄(x) = 1 si x ∈ U y f̄(x) = 0 si
x /∈ U . Por consiguiente, f = f̄ .

Por la proposición 5.1 (y su demostración), es sabido que el funtor F está representado por
{0, 1}, con ello se sabe que para todo espacio topológico X se tiene la biyección F(X) ≃ Mor(X, {0, 1}),
y es posible concluir que hay tantas funciones continuas X → {0, 1} como abiertos en X. La idea
que debe resaltarse es que Mor(X, {0, 1}) está “parametrizando” a los abiertos de X: en primer lu-
gar, se tiene la biyección F(X) ≃ Mor(X, {0, 1}) y además, dado un morfismo f ∈ Mor(X, {0, 1})
se puede conocer cuál es su abierto correspondiente.

6. Conclusiones

En este trabajo se abordó el Lema de Yoneda. Para ilustrar su inserción y aplicación en el
contexto de la teoŕıa de categoŕıas, se abordaron varios ejemplos interesantes, que permitieron
ilustrar los conceptos y resultados. De forma precisa se tiene lo siguiente:

La teoŕıa de categoŕıas se define en términos muy generales, lo cual hace que existan ejemplos
muy variados de éstas.

Se obtuvieron resultados muy concretos; para lograrlo tuvimos que considerar categoŕıas y
funtores espećıficos: primero se puso atención en los funtores que tuvieran como categoŕıa
de llegada a Set. Luego, el interés cambió a aquellos que fueran naturalmente isomorfos a
Mor(,−).

Se obtuvieron resultados espećıficos: que Mor(−, A) ≃ Mor(−, B) implica que A ≃ B, o que
un funtor es representable si y solo si, tiene un objeto universal. Se debe de mencionar que
para demostrar estos dos resultados mencionados, se empleó el Lema de Yoneda (o bien, su
versión débil).

En la demostración de los resultados, fue posible notar que hab́ıan ciertos objetos que jugaban
un papel importante en la demostración (especialmente, en la demostración del Lema (débil)
de Yoneda); en los casos particulares se investigó qué información era posible obtenerse a
partir de ellos:
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1. En el ejemplo 3.1, el objeto de interés fue R, el cual representa al funtor olvidadizo, y se
observó que hay tantas funciones lineales R → V como vectores hay en V (donde V es
un R-espacio vectorial).

2. Posteriormente, en el ejemplo 4.1 la transformación natural F → F permit́ıa distinguir
entre forma y función polinomial. Además, se vio que siempre es posible definir una
función de Z[X] en cualquier anillo R, y gracias a esto fue demostrado que el funtor
olvidadizo F está representado por Z[X].

3. Por último, en el ejemplo 5.1 se encontró un objeto universal y se vio de qué mane-
ra (utilizando el funtor de puntos) permit́ıa parametrizar los abiertos de un espacio
topológico.

A lo largo de este escrito se ejemplificó cómo la teoŕıa de categoŕıas proporciona un lenguaje
bastante general pero que permite llegar a lo particular. Uno en el cual se puede expresar hechos
matemáticos, resaltar objetos de interés y que permite, a través de resultados propios de la teoŕıa,
obtener información de otras áreas de las matemáticas.
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