An unstructured finite-volume method for the two-dimensional conservative transport equation

Autores/as

DOI:

https://doi.org/10.19136/jobs.a11n30.6459

Palabras clave:

M ́etodo de vol ́umenes finito, ecuaci ́on de transporte conservativ, malla noestructurada, esquema upwin, segundo orden de precisio, limitador de flujo

Resumen

En este art ́ıculo presentamos un m ́etodo de segundo orden de precisi ́on tanto temporal como es-pacial, para resolver la ecuaci ́on de transporte conservativa en dominios bidimensionales. La dis-cretizaci ́on espacial se basa en un enfoque de volumen finito que utiliza celdas triangulares arbi-trarias. Se emplea el m ́etodoθpara la integraci ́on temporal. Se propone un esquema de segundoorden del tipoupwindcon una formulaci ́on de limitador de flujo para la disminuci ́on de extremoslocales para aproximar los t ́erminos advectivos. El m ́etodo num ́erico se valida con casos de pruebacl ́asicos de advecci ́on, que incluyen diferentes funciones caracter ́ısticas y tipos de mallas. Final-mente, se realizan varias pruebas para demostrar las capacidades del esquema propuesto

Referencias

LeVeque RJ. High-resolution conservative algorithms for advection in incompressible flow. SIAM Journal Numerical Analysis, 1996; 33(2):627-65. DOI: https://doi.org/10.1137/0733033

Osher S, Fedkiw RP. Level set method: an overview and some recent results. J. Comput. Phys. 2001; 169:463-502. DOI: https://doi.org/10.1006/jcph.2000.6636

Sethian JA, Smereka P. Level set methods for fluids interfaces. Annu. Rev. Fluid Mech. 2003; 35:341-372. DOI: https://doi.org/10.1146/annurev.fluid.35.101101.161105

Uh Zapata, M., Itzá Balam, R. A conservative level-set/finite-volume method on unstructured grids based on a central interpolation scheme. J. Comput. Phys., 444, 110576, 2021. DOI: https://doi.org/10.1016/j.jcp.2021.110576

Uh Zapata, M., Itzá Balam, R. A 3D Two-Phase Conservative Level-Set Method Using an Unstructured Finite-Volume Formulation. In Mathematical and Computational Models of Flows and Waves in Geophysics (pp. 67-101). Springer International Publishing, 2022. DOI: https://doi.org/10.1007/978-3-031-12007-7_3

Kees CE, Akkerman I, Farthing MW, Bazilevs Y. A conservative level set method suitable for variable-order approximations and unstructured meshes. J. Comput. Phys., 2011; 230:4536-4558. DOI: https://doi.org/10.1016/j.jcp.2011.02.030

Ito K, Kunugi T, Ohshima H, Kawamura T. (2013). A volume-conservative PLIC algorithm on three-dimensional fully unstructured meshes. Computers & Fluids, 2013; 88, 250-261. DOI: https://doi.org/10.1016/j.compfluid.2013.09.016

Balc'{a}zar N, Jofre L, Lehmkuhl O, Castro J, Rigola J. A finite-volume/level-set method for simulating two-phase flows unstructured grids. International journal of multiphase flow, 2014; 64:55-72. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2014.04.008

Xie B, Peng J, Feng X. An unstructured-grid numerical model for interfacial multiphase fluids based on multi-moment finite volume formulation and THINC method. International Journal of Multiphase Flow, 2017; 89:375-398. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2016.10.016

Li LX, Liao HS, Qi LJ. An improved r-factor algorithm for TVD schemes. International Journal of Heat and Mass Transfer, 2008; 51(3-4):610-617. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.051

Lien FS. A pressure-based unstructured grid method for all-speed flows, Int. J. Numer. Meth. Fluids 2000; 33:355-374. DOI: https://doi.org/10.1002/1097-0363(20000615)33:3<355::AID-FLD12>3.0.CO;2-X

Vidovi{'c} D, Segal A, Wesseling P. A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids. Journal of Computational Physics 2006; 217(2):277-294. DOI: https://doi.org/10.1016/j.jcp.2006.01.031

Eymard R, Gallouet T, Herbin R. Finite Volume Methods, Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal.,VII, North-Holland, Amsterdan 2000. DOI: https://doi.org/10.1016/S1570-8659(00)07005-8

Descargas

Publicado

2025-04-30

Número

Sección

Artículo científico

Cómo citar

Itza Balam, R. A., & Uh Zapata, M. A. (2025). An unstructured finite-volume method for the two-dimensional conservative transport equation. JOURNAL OF BASIC SCIENCES, 11(30), 16-31. https://doi.org/10.19136/jobs.a11n30.6459