An unstructured finite-volume method for the two-dimens

Authors

DOI:

https://doi.org/10.19136/jobs.a11n30.6459

Keywords:

Finite-volume method, conservative transport equation, unstructured grid, pwind schem, second order of accurac, flux limiter

Abstract

In this paper, we present a second-order, time- and space-accurate method for solving conservative transport equation in two-dimensional domains. The spatial discretization is based on a finite volume approach using triangular cells of arbitrary shape. A θ-method is employed for the time integration. A second-order upwind scheme with a Local Extremum Diminishing flux limiter formulation is proposed to approximate the advective terms. The numerical method is validated against classical advection test cases, including different characteristic functions and type of grids. Finally, several tests are conducted to demonstrate the capabilities of the proposed scheme.

References

LeVeque RJ. High-resolution conservative algorithms for advection in incompressible flow. SIAM Journal Numerical Analysis, 1996; 33(2):627-65. DOI: https://doi.org/10.1137/0733033

Osher S, Fedkiw RP. Level set method: an overview and some recent results. J. Comput. Phys. 2001; 169:463-502. DOI: https://doi.org/10.1006/jcph.2000.6636

Sethian JA, Smereka P. Level set methods for fluids interfaces. Annu. Rev. Fluid Mech. 2003; 35:341-372. DOI: https://doi.org/10.1146/annurev.fluid.35.101101.161105

Uh Zapata, M., Itzá Balam, R. A conservative level-set/finite-volume method on unstructured grids based on a central interpolation scheme. J. Comput. Phys., 444, 110576, 2021. DOI: https://doi.org/10.1016/j.jcp.2021.110576

Uh Zapata, M., Itzá Balam, R. A 3D Two-Phase Conservative Level-Set Method Using an Unstructured Finite-Volume Formulation. In Mathematical and Computational Models of Flows and Waves in Geophysics (pp. 67-101). Springer International Publishing, 2022. DOI: https://doi.org/10.1007/978-3-031-12007-7_3

Kees CE, Akkerman I, Farthing MW, Bazilevs Y. A conservative level set method suitable for variable-order approximations and unstructured meshes. J. Comput. Phys., 2011; 230:4536-4558. DOI: https://doi.org/10.1016/j.jcp.2011.02.030

Ito K, Kunugi T, Ohshima H, Kawamura T. (2013). A volume-conservative PLIC algorithm on three-dimensional fully unstructured meshes. Computers & Fluids, 2013; 88, 250-261. DOI: https://doi.org/10.1016/j.compfluid.2013.09.016

Balc'{a}zar N, Jofre L, Lehmkuhl O, Castro J, Rigola J. A finite-volume/level-set method for simulating two-phase flows unstructured grids. International journal of multiphase flow, 2014; 64:55-72. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2014.04.008

Xie B, Peng J, Feng X. An unstructured-grid numerical model for interfacial multiphase fluids based on multi-moment finite volume formulation and THINC method. International Journal of Multiphase Flow, 2017; 89:375-398. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2016.10.016

Li LX, Liao HS, Qi LJ. An improved r-factor algorithm for TVD schemes. International Journal of Heat and Mass Transfer, 2008; 51(3-4):610-617. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.051

Lien FS. A pressure-based unstructured grid method for all-speed flows, Int. J. Numer. Meth. Fluids 2000; 33:355-374. DOI: https://doi.org/10.1002/1097-0363(20000615)33:3<355::AID-FLD12>3.0.CO;2-X

Vidovi{'c} D, Segal A, Wesseling P. A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids. Journal of Computational Physics 2006; 217(2):277-294. DOI: https://doi.org/10.1016/j.jcp.2006.01.031

Eymard R, Gallouet T, Herbin R. Finite Volume Methods, Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal.,VII, North-Holland, Amsterdan 2000. DOI: https://doi.org/10.1016/S1570-8659(00)07005-8

Downloads

Published

2025-04-30

Issue

Section

Artículo científico

How to Cite

Itza Balam, R. A., & Uh Zapata, M. A. (2025). An unstructured finite-volume method for the two-dimens. JOURNAL OF BASIC SCIENCES, 11(30), 16-31. https://doi.org/10.19136/jobs.a11n30.6459