Impact of numerical discretization of the total variation noise removal model.
DOI:
https://doi.org/10.19136/jobs.a11n30.6447Keywords:
Image denoising, variational method, partial differential equations, optimization, image processingAbstract
In this manuscript, different numerical discretization techniques are compared, as well as optimization algorithms to find a solution to the total variation based model propoused for Rudin, Osher and Fatemi in 1992. In the same way, we made a qualitative and quantitative analysis of the obtained results.
References
Jin, Cong, and Luan, Ningli. “An image denoising iterative approach based on total variation and weighting function”. Multimedia Tools and Applications 79.29 (2020): 20947–20971. DOI: https://doi.org/10.1007/s11042-020-08871-0
Caselles, Vicent, Chambolle, Antonin, Novaga, Matteo, and others. “Total Variation in Imaging.”. Handbook of mathematical methods in imaging 1.2 (2015): 3 DOI: https://doi.org/10.1007/978-3-642-27795-5_23-5
Tang, Liming, and Fang, Zhuang. “Edge and contrast preserving in total variation image denoising”. EURASIP Journal on Advances in Signal Processing 2016. (2016): 1–21. DOI: https://doi.org/10.1186/s13634-016-0315-5
Strong, David, and Chan, Tony. “Edge-preserving and scale-dependent properties of total variation regularization”. Inverse problems 19.6 (2003): S165. DOI: https://doi.org/10.1088/0266-5611/19/6/059
Rudin, Leonid I, Osher, Stanley, and Fatemi, Emad. “Nonlinear total variation based noise removal algorithms”. Physica D: nonlinear phenomena 60.1-4 (1992): 259–268. DOI: https://doi.org/10.1016/0167-2789(92)90242-F
Chan, Tony F, Zhou, Hao Min, and Chan, Raymond Hon-fu. Continuation method for total variation denoising problems. Vol. 2563.
Saxena, Chandrika, and Kourav, Deepak. “Noises and image denoising techniques: A brief survey”. International journal of Emerging Technology and advanced Engineering 4.3 (2014): 878–885.
Chambolle, Antonin, and Lions, Pierre-Louis. “Image recovery via total variation minimization and related problems”. Numerische Mathematik 76. (1997): 167–188. DOI: https://doi.org/10.1007/s002110050258
Ivan May-Cen, Ricardo Legarda-Saenz, and Carlos Brito-Loeza . “A Variational Model for Wrapped Phase Denoising”. Mathematics 12. (2023). DOI: https://doi.org/10.3390/math11122618
Fan, Linwei, Zhang, Fan, Fan, Hui, and Zhang, Caiming. “Brief review of image denoising techniques”. Visual Computing for Industry, Biomedicine, and Art 2.1 (2019): 7. DOI: https://doi.org/10.1186/s42492-019-0016-7
Kim, Donghwan, and Fessler, Jeffrey A. “Optimized first-order methods for smooth convex minimization”. Mathematical programming 159. (2016): 81–107. DOI: https://doi.org/10.1007/s10107-015-0949-3
Vogel, Curtis R, and Oman, Mary E. Ïterative methods for total variation denoising”. SIAM Journal on Scientific Computing 17.1 (1996): 227–238. DOI: https://doi.org/10.1137/0917016
Bezanson, Jeff, Edelman, Alan, Karpinski, Stefan, and Shah, Viral B. “Julia: A fresh approach to numerical computing”. SIAM Review 59.1 (2017): 65–98. DOI: https://doi.org/10.1137/141000671
Wang, Z. Bovik, A.C. Sheikh, H.R. and Simoncelli, E.P. “Image Quality Assessment: From Error Visibility to Structural Similarity”. IEEE Transactions on Image Processing 13.4 (2004): 600–612. DOI: https://doi.org/10.1109/TIP.2003.819861
Setiadi, De Rosal Igantius Moses. “PSNR vs SSIM: imperceptibility quality assessment for image steganography”. Multimedia Tools and Applications 80.6 (2020): 8423–8444. DOI: https://doi.org/10.1007/s11042-020-10035-z
Vese, L.A. and Guyader, C.L. Variational Methods in Image Processing. CRC Press.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Basic Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- NoComercial — Usted no puede hacer uso del material con propósitos comerciales .
- SinDerivadas — Si remezcla, transforma o crea a partir del material, no podrá distribuir el material modificado.
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
Avisos:
No tiene que cumplir con la licencia para elementos del materiale en el dominio público o cuando su uso esté permitido por una excepción o limitación aplicable.
No se dan garantías. La licencia podría no darle todos los permisos que necesita para el uso que tenga previsto. Por ejemplo, otros derechos como publicidad, privacidad, o derechos morales pueden limitar la forma en que utilice el material.