Photocatalytic Properties of ZnO Synthesized by Solid-State Combustion: Structural Analysis and Degradation of 4-Nitrophenol

Authors

  • Alma Rosa Alejandro López Universidad Juárez Autónoma de Tabasco image/svg+xml
  • Laura Elvira Serrano de la Rosa Meritorious Autonomous University of Puebla image/svg+xml
  • Sandra Leticia Castillejos Mosqueda Meritorious Autonomous University of Puebla image/svg+xml
  • Jorge Cerna Cortez Meritorious Autonomous University of Puebla image/svg+xml
  • Adib Abiu Silahua Pavon Universidad Juárez Autónoma de Tabasco image/svg+xml
  • Adrián Cervantes Uribe Universidad Juárez Autónoma de Tabasco image/svg+xml
  • Claudia Martínez Gómez University of Guanajuato image/svg+xml

DOI:

https://doi.org/10.19136/jobs.a11n32.6410

Keywords:

ZnO, Photocatalysis, 4-Nitrophenol, Solid-estate combustion

Abstract

This study presents the synthesis and characterization of zinc oxide (ZnO) through solid-state combustion and its application in the photodegradation of 4-nitrophenol (4-NP). The obtained ZnO exhibited a hexagonal wurtzite crystal structure. UV-Vis spectroscopy revealed a band gap of 3.31 eV and a specific surface area of 0.63 m²/g. This zinc oxide demonstrated photocatalytic activity in the degradation of 4-nitrophenol (4-NP). These results show that solid-state combustion is an effective method for producing ZnO with optimal properties for environmental applications, without the need for additional chemical agents.

References

[1] R. Hong, T. Pan, J. Qian, y H. Li, «Synthesis and surface modification of ZnO nanoparticles», Chemical Engineering Journal, vol. 119, n.o 2-3, pp. 71-81, jun. 2006, doi: 10.1016/j.cej.2006.03.003.

[2] M. J. Zheng, L. D. Zhang, G. H. Li, y W. Z. Shen, «Fabrication And Optical Properties Of Large-Scale Uniform Zinc Oxide Nanowire Arrays By One-Step Electrochemical Deposition Technique», Chemical Physics Letters, vol. 363, n.o 1-2, pp. 123-128, sep. 2002, doi: 10.1016/S0009-2614(02)01106-5.

[3] V. Consonni, «ZnO Nanowires: Growth, Properties, and Energy Applications», Nanomaterials, vol. 13, n.o 18, p. 2519, sep. 2023, doi: 10.3390/nano13182519.

[4] M. Laurenti y V. Cauda, «ZnO Nanostructures for Tissue Engineering Applications», Nanomaterials, vol. 7, n.o 11, p. 374, nov. 2017, doi: 10.3390/nano7110374.

[5] M. A. Borysiewicz, «ZnO as a Functional Material, a Review», Crystals, vol. 9, n.o 10, p. 505, sep. 2019, doi: 10.3390/cryst9100505.

[6] Y. Sun et al., «The Applications of Morphology Controlled ZnO in Catalysis», Catalysts, vol. 6, n.o 12, p. 188, nov. 2016, doi: 10.3390/catal6120188.

[7] X. Wang, M. Ahmad, y H. Sun, «Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications», Materials, vol. 10, n.o 11, p. 1304, nov. 2017, doi: 10.3390/ma10111304.

[8] Z. L. Wang, «Zinc Oxide Nanostructures: Growth, Properties And Applications», J. Phys.: Condens. Matter, vol. 16, n.o 25, pp. R829-R858, jun. 2004, doi: 10.1088/0953-8984/16/25/R01.

[9] A. Ejsmont y J. Goscianska, «Hydrothermal Synthesis of ZnO Superstructures with Controlled Morphology via Temperature and pH Optimization», Materials, vol. 16, n.o 4, p. 1641, feb. 2023, doi: 10.3390/ma16041641.

[10] C. Gao et al., «Brief Review of Photocatalysis and Photoresponse Properties of ZnO–Graphene Nanocomposites», Energies, vol. 14, n.o 19, p. 6403, oct. 2021, doi: 10.3390/en14196403.

[11] V. Vaiano, O. Sacco, y M. Matarangolo, «Photocatalytic Degradation Of Paracetamol Under UV Irradiation Using Tio2-Graphite Composites», Catalysis Today, vol. 315, pp. 230-236, oct. 2018, doi: 10.1016/j.cattod.2018.02.002.

[12] D. Bakranova y D. Nagel, «ZnO for Photoelectrochemical Hydrogen Generation», Clean Technol., vol. 5, n.o 4, pp. 1248-1268, oct. 2023, doi: 10.3390/cleantechnol5040063.

[13] X. Su et al., «Influence of Wurtzite ZnO Morphology on Piezophototronic Effect in Photocatalysis», Catalysts, vol. 12, n.o 9, p. 946, ago. 2022, doi: 10.3390/catal12090946.

[14] S. Luo, R. Chen, L. Xiang, y J. Wang, «Hydrothermal Synthesis of (001) Facet Highly Exposed ZnO Plates: A New Insight into the Effect of Citrate», Crystals, vol. 9, n.o 11, p. 552, oct. 2019, doi: 10.3390/cryst9110552.

[15] A. K. Zak, M. E. Abrishami, W. H. Abd. Majid, R. Yousefi, y S. M. Hosseini, «Effects Of Annealing Temperature On Some Structural And Optical Properties Of Zno Nanoparticles Prepared By A Modified Sol–Gel Combustion Method», Ceramics International, vol. 37, n.o 1, pp. 393-398, ene. 2011, doi: 10.1016/j.ceramint.2010.08.017.

[16] S. Indrawirawan, H. Sun, X. Duan, y S. Wang, «Low Temperature Combustion Synthesis Of Nitrogen-Doped Graphene For Metal-Free Catalytic Oxidation», J. Mater. Chem. A, vol. 3, n.o 7, pp. 3432-3440, 2015, doi: 10.1039/C4TA05940A.

[17] M. Thommes et al., «Physisorption Of Gases, With Special Reference To The Evaluation Of Surface Area And Pore Size Distribution (IUPAC Technical Report)», Pure and Applied Chemistry, vol. 87, n.o 9-10, pp. 1051-1069, oct. 2015, doi: 10.1515/pac-2014-1117.

[18] A. Stanković, Lj. Veselinović, S. D. Škapin, S. Marković, y D. Uskoković, «Controlled Mechanochemically Assisted Synthesis Of Zno Nanopowders In The Presence Of Oxalic Acid», J Mater Sci, vol. 46, n.o 11, pp. 3716-3724, jun. 2011, doi: 10.1007/s10853-011-5273-6.

[19] K. S. W. Sing et al., «Reporting Physisorption Data for Gas/Solid Systems», en Handbook of Heterogeneous Catalysis, 1.a ed., G. Ertl, H. Knözinger, F. Schüth, y J. Weitkamp, Eds., Wiley, 2008, pp. 1217-1230. doi: 10.1002/9783527610044.hetcat0065.

Downloads

Published

2025-12-12

Issue

Section

Artículo científico

How to Cite

Alejandro López, A. R., Serrano de la Rosa, L. E., Castillejos Mosqueda, S. L., Cerna Cortez, J., Silahua Pavon, A. A., Cervantes Uribe, A., & Martínez Gómez, C. (2025). Photocatalytic Properties of ZnO Synthesized by Solid-State Combustion: Structural Analysis and Degradation of 4-Nitrophenol. JOURNAL OF BASIC SCIENCES, 11(32), 20-28. https://doi.org/10.19136/jobs.a11n32.6410